Jogo educativo sobre Ecotoxicologia em HTML5

Samuel Negri Morais, Marcos A. F. Borges.

Laboratório de Informática, Aprendizagem e Gestão/FT (LIAG) – Faculdade de Tecnologia - Universidade Estadual de Campinas (FT/UNICAMP) – Limeira – SP – Brasil.

samukanm@gmail.com, marcosborges@ft.unicamp.br

Resumo. Este artigo descreve um jogo educacional relacionado à ecotoxicologia, que busca difundir o conhecimento acerca desta área e conscientizar o publico sobre a questão ambiental. Trata-se de um jogo educacional desenvolvido em HTML5 com programação Javascript.

Abstract. This article describes an educational game related to ecotoxicology, which seeks to spread knowledge about this area and educate the public about environmental issues. This is an educational game developed in HTML5 with Javascript programming.

1. Introdução.

É crescente o número de brasileiros com acesso a internet. Segundo dados da Pesquisa Nacional Amostra Domicilio, PNAD, o número de brasileiros maiores de 10 anos de idade que acessam a Internet de 2005 para 2008, aumentou 75,3% (IBGE, 2009). Devido a essa grande abrangência, a internet pode se tornar uma forma muito eficiente de atingir seu publico alvo. Ainda relacionada a essa tendência, está o avanço das tecnologias web, como a nova versão do HTML (W3C, 2012), que nos trouxe um enorme avanço no paradigma de desenvolvimento web, principalmente no que diz respeito a conteúdo multimídia, como animações, vídeos, musicas e jogos. A combinação dessas duas tecnologias formam uma ferramenta poderosa para conquistar a atenção de um publico para um determinado ponto. Nesse contexto, o jogo "Daphnia World" foi criado, com o objetivo de incentivar as pessoas a se conscientizar a respeito da ecotoxicologia, subárea da ecologia que estuda os efeitos que substancias podem causar sobre ecossistemas, principalmente aquáticos (Truhaut, 1977).

O texto está organizado nas seguintes seções: a seção 2 discute os materiais e métodos utilizados para o desenvolvimento do software; a seção 3 descreve o jogo em si e seu funcionamento; a seção 4 apresenta uma conclusão sobre o assunto; a seção 5 apresenta as referencias bibliográficas citadas nesse texto.

2. Materiais e Métodos

Esta seção apresenta as tecnologias utilizadas no desenvolvimento do software. A seção 2.1 descreve a nova versão da linguagem de marcação web HTML. A seção 2.2 apresenta a linguagem de programação Javascript, utilizada no desenvolvimento do jogo. A seção 2.3 descreve o conceito de engine para o desenvolvimento de jogos.

2.1 HTML5

O HTML é a linguagem padrão interpretada pelos navegadores para montar as paginas web de acordo com essas marcações. Na sua ultima versão, foram adicionadas muitas funcionalidades, principalmente para conteúdos multimídia como a exibição de animações, vídeos, musicas e até mesmo jogos (WHATSWG, 2012).

O elemento canvas foi adicionado ao HTML5 para a exibição de animações. O canvas reserva uma área na pagina para a exibição de animações e ainda conta com uma *API (Application Programming Interface) que inclui* operações para possibilitar a construção de formas básicas de desenho (W3C, 2012).

2.2 Javascript.

Para manipular o canvas é necessário que uma linguagem de programação faça a interface com a canvas API. Para este jogo foi utilizado o *Javascript* como linguagem de programação, que controla toda a lógica do jogo. Trata-se de uma linguagem orientada a objetos processada pelo navegador que acessa a pagina. Isto quer dizer que o processamento da aplicação torna-se menos custoso para o servidor, pois essa tarefa é passada para o cliente, o que possibilita uma maior disponibilidade do jogo online sem congestionamento (Hazaël-Massieux, 2012). Além disso, *JavaScript* é uma tecnologia gratuita do *World Wide Web Consortium* (W3C, 2012).

2.3 Engine

A manipulação do canvas pode ser feita diretamente pelo Javascript, porém o código pode ficar repetitivo e poluído, pois a programação para jogos normalmente segue uma seqüência de eventos e alterações de estados que costumam repetir muito. A fim de evitar esse tipo de problema e melhorar o desempenho do mesmo (HERWIG, et al., 2002), o jogo conta com uma *engine* que oferece ao desenvolvedor um framework para facilitar o desenvolvimento, que controla o tempo e espaço do jogo (Lewis, et al., 2002).

Um aluno Faculdade de Tecnologia (FT) da UNICAMP que participava do Laboratório de Aprendizado Informática e Gestão (LIAG) desenvolveu em seu trabalho de graduação interdisciplinar a *engine* utilizada no "Daphnia World".

2.2. Paradigma de aprendizagem construtivista.

Existem varias teorias de aprendizagem, modelos que tentam explicar como o aprendizado ocorre. Cada modelo utiliza de diferentes tipos de ensino. As teorias de aprendizagem mais conhecidas são: a construcionista, instrucionista e a construtivista.

Estes processos de aprendizado descrevem formas diferentes de aprender. O instrucionismo coloca o aprendizado como algo exato e o papel do professor como um auxiliar na aquisição desse conhecimento pelos estudantes. Já o construtivismo descreve o conhecimento como algo que é adquirido a partir das experiências vividas, um método diferente para cada um. O construcionismo por sua vez é baseado no construtivismo e

prega que o conhecimento é adquirido a partir da interação do individuo com objetos no mundo real (Papert, 1991).

3. O Jogo

A ultima versão do jogo apresenta, inicialmente, um menu para obter ajuda sobre como jogar, informações técnicas e, por fim, acessar o jogo. A Figura 1 mostra o menu do jogo.

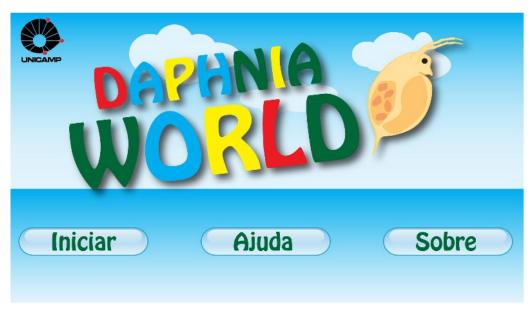
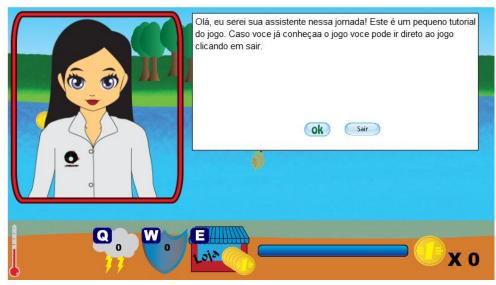



Figura 1: Menu do jogo

Assim que o jogo inicia, é apresentada a tutora do jogo, um tecnologa em saneamento ambiental, que apresentará logo em seguida toda interface. Caso o jogador já tenha jogado ou mesmo queira pular o tutorial basta clicar no botão sair. A partir deste ponto o jogador assume o controle da daphnia. A interação com o usuário ocorre pelas setas do teclado, atalhos e os ícones na interface do jogo. A Figura 2 mostra a tela inicial do jogo.

Figura 2: Tela inicial do jogo, interface e apresentação da tutora.

Há vários outros objetos no jogo. Algas para encher a vida da daphnia, moedas para adquirir itens que possam auxiliar o jogador no decorrer do jogo, peixes e hydras, predadores da daphnia, indústrias e objetos do cenário, que apenas ilustram o jogo, como vacas e pássaros. A Figura 3 mostra esses objetos.

Figura 3: Objetos do jogo.

Caso o jogador chegue ao final do jogo, é apresentado um *frame*, parabenizando o jogador pela vitória, que mostra que a daphnia conseguiu se reproduzir. Se o jogador perdeu, outro *frame* apresenta a daphnia desmaiada e a tutora incentiva o jogador a tentar novamente. A Figura 4 mostra os *frames* de vitória e derrota.

Figura 4: Frames de derrota e vitória, respectivamente.

5. Conclusão.

As tecnologias web empregadas nesse projeto, o canvas do HTML5 e a linguagem de programação Javascript, funcionaram muito bem e deram um bom suporte para as necessidades do jogo, junto com o framework da engine.

Por ser uma tecnologia recente, a HTML5 ainda não é tem suporte total em todos os navegadores, porém já é acessível pela maior parte deles. Espera-se que logo, todos os navegadores mais populares dêem suporte completo a tecnologia HTML5, uma vez que se trata de uma atualização do HTML.

O trabalho discute temas fortemente acadêmicos, no que diz respeito a paradigmas de aprendizagem e também a aplicação da tecnologia HTML5 no desenvolvimento de jogos.

Além disso, a interdisciplinaridade é uma das características do projeto, pois nele participaram alunos, professores e pesquisadores dos cursos superiores de Tecnologia em Informática e Saneamento Ambiental.

6. Referencias Bibliográficas.

- **Hazaël-Massieux, Dominique. 2012.** JAVASCRIPT WEB APIS. *w3.org*. [Online] W3C, 2012. [Citado em: 11 de Julho de 2012.] http://www.w3.org/standards/webdesign/script.html.
- **HERWIG, Adrian e PAAR, Philip. 2002.** Game Engines: Tools for Landscape Visualization and. [A. do livro] Wichmann Verlag. *Trends in GIS and Virtualization in Environmental Planning and Design.* heidelberg: Anhalt University of Applied Sciences, 2002, pp. 161-172.
- **IBGE. 2009.** De 2005 para 2008, acesso à Internet aumenta 75,3%. *IBGE :: Instituto Brasileiro de Geografia e Estatistica*. [Online] 11 de Dezembro de 2009. [Citado em: 12 de Julho de 2012.] http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=1517.
- Lewis, Michael e Jacobson, Jeffrey. 2002. Game Engines in Scientific Research. *COMMUNICATIONS OF THE ACM.* 2002, Vol. 45, 1.
- **Papert, S. e Harel, I.** 1991. Situating Constructionism. In Constructionism: research. 1991.
- **Truhaut, R. 1977.** Ecotoxicology: Objectives, Principles and Perspectives. *Ecotoxicology and Environmental Safety*. New York: s.n., 1977, Vol. 1, pp. 151-173.
- **W3C. 2012.** HTML Canvas 2D Context. *w3*. [Online] W3C, 7 de Março de 2012. [Citado em: 11 de Julho de 2012.] http://dev.w3.org/html5/2dcontext/.
- —. **2012.** JavaScript Tutorial. *w3cschools*. [Online] W3C, 2012. [Citado em: 11 de Julho de 2012.] http://www.w3schools.com/js/.
- **WHATSWG. 2012.** WHATSWG. 4.8.11 The canvas element HTML Standard. [Online] WHATSWG, 10 de Julho de 2012. [Citado em: 11 de Julho de 2012.] http://www.w3schools.com/html5/tag canvas.asp.