
Contributions of Bioinformatics for computing education in
the detection of programming assignment plagiarism

Kaio P. Gomes1, Simone N. Matos2

1Department of Informatics
Federal University of Technology - Parana (UTFPR) – Ponta Grossa, PR – Brazil

2Department of Informatics
Federal University of Technology - Parana (UTFPR) – Ponta Grossa, PR – Brazil

kgomes@alunos.utfpr.edu.br, snasser@utfpr.edu.br

Abstract. Any source code can be modified in several ways to confuse plagia-
rism detection systems. Such diverse modifications require the usage of systems
which can handle different types of plagiarism. The usage of automatic source
code plagiarism detectors has implications for computing education. This paper
extends Pedersen’s work, a Bioinformatics method, by performing the applica-
tion of this method on programming plagiarism domain, and by analyzing the
usage of such tools through a discussion associated with the support for profes-
sors in assessing students’ assignments. The application results are compared
to a commonly used solution for the same purpose, the JPLAG tool. As a result
of the evaluating study, the applied method showed a higher rate of similarity
for specific types of plagiarism. Also, as a result of the analysis involving the
use of an automatic tool for plagiarism in programming showed the benefits for
computing education.

1. Introduction
Plagiarism is a common problem that cannot be limited to academic cases
[Chuda et al. 2012]. A survey with academic students indicates a rate of 72,5% from
the participants admitted to plagiarizing at least once during their study obligations, for
instance: writing a computing assignment or writing an essay, term paper, research, and
others. Considering the particular case of writing a coding assignment, the results indi-
cate that 50% of the students have plagiarized in programming courses by changing their
source code [Sraka and Kaucic 2009].

Given the importance of the topic, plagiarism detection systems have been de-
veloped to assess student assignment authenticity [Prechelt et al. 2002]. As shown in
[Le Nguyen et al. 2013], the usage of automatic plagiarism detectors can reduce consid-
erably the academic dishonesty. Furthermore, such solutions can support professors by
avoiding time-consuming and extra effort activities associated with the manual process
of identifying plagiarism on student’s assignment. However, the benefits are viable since
the tools have high quality to assess plagiarism. Otherwise, the students are motivated to
complain about false detections.

The programming plagiarism can be done by performing modifications on the
source codes. For instance, modification of control structures, variables, data structures or
structural redesign [Durić and Gašević 2013]. According to [Roy and Cordy 2007], such

DOI: 10.5753/cbie.sbie.2019.1351 1351

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



modifications can be classified into four types of source code plagiarism based on the
level of identification difficulty. The identification of source code plagiarism is based on
different methods and techniques that are applied to plagiarism detectors. Although there
are a number of proposed solutions in computing plagiarism field, none of them might
contemplate every type of source code plagiarism. However, a study in field of computer
security, conducted by [Pedersen et al. 2012] has shown the opportunity of applying a
Bioinformatics inspired method in the plagiarism detection area.

The Bioinformatics method proposed by [Pedersen et al. 2012] “utilizes an inter-
disciplinary approach to determine the pedigree of a digital artifact”. This method models
digital artifacts into a DNA sequence. For example, a source code file is a digital artifact
since it has a binary representation and; for this reason, a process of turning such represen-
tations into a DNA sequence allows to execute powerful bioinformatics alignment tools to
identify the level of similarity between these modeled sequences. The reporting generated
from the utilized alignment tool shows the regions of similarities of these sequences, and
it can be designed to provide information about the level of similarity among the digital
artifacts or source codes. The similarity reporting can be used to build an automatic stu-
dent plagiarism detection tool, which aids teachers to assess programming assignments in
computing or related courses.

In the present work, we propose validating this Bioinformatics method through
its application in the context of detecting source codes plagiarism and analyzing the im-
plications of its usage for computing education. To perform the validation, we conduct
an empirical study based on the execution of the Bioinformatics method in four different
experiment scenarios. Each scenario is related to a specific type of source code plagiarism
proposed by [Roy and Cordy 2007]. Every result is compared to one of the most accepted
tools for detecting programming plagiarism, in this case, the chosen is the JPLAG.

2. Background
The application of the Bioinformatics method for detecting source code plagiarism re-
quires knowledge over an interdisciplinary approach. It involves the field of Bioinformat-
ics and programming plagiarism. This section shows basic concepts for both areas.

2.1. Bioinformatics

The deoxyribonucleic acid, commonly referred to as DNA, is related to the material that
chromosomes are made of. The DNA is composed of a chain of repeating monomers, bet-
ter known as nucleotides. The nucleotides found in deoxyribonucleic are four: guanine,
cytosine, thymine, and adenine. These nucleotides are represented through the abbre-
viations G, C, T, A and U, respectively [Hunter 2012]. In the field of computing, the
DNA can be modeled as a chain of characters [Arya et al. 2017]. The molecular structure
of DNA is a double helix, which generates a double-stranded form [Watson et al. 1953].
Each strand is located by an associated direction, known as prime positions. The prime
positions are referred to as 5’ prime and 3’ prime. The direction of the strands is from 5
to 3 or 3 to 5, each strand is anti-parallel to the other [Pedersen et al. 2012].

A DNA sequence can be compared to other DNA sequence through the process of
alignment [Orabi et al. 2014]. The sequence alignment is a technique to identify regions
of similarities among sequences. Figure 1 illustrates the process of alignment given two

1352

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



DNA sequences. The sequence alignment can be done by two different approaches such
as local alignment and global alignment. The global alignment recognizes the similarity
between prime positions considering the entire sequences. Unlike global alignment, the
local type seeks for specific regions of similarity. Both types of alignment shows how
similar two sequences might be [Jayapriya and Arock 2015].

Figure 1. Example of alignment

As shown in Figure 1 , the DNA sequence alignment consists of comparing nu-
cleotide by nucleotide. There are three scenarios as results of these comparisons: match,
mismatch, and gap. The match scenario is the scenario when both nucleotides are equal.
Unlike the match case, the mismatch scenario is when both nucleotides are different to
each other. Finally, the gap scenario represents the absence of at least one nucleotide. A
general process of alignment utilizes a scoring system. Each scoring system attributes
different values for each possibility of existed scenario. The final score is the sum of
all individual scores obtained in the alignment, and that gives the result of this general
process.

2.2. Programming Plagiarism

According to [Parker and Hamblen 1989], a plagiarized source code can be defined as
a result of modifications produced from another source code. For instance, the follow-
ing modifications might be performed in a plagiarized source code: comments changes,
indentations changes, control structures changes, variables changes, and data structures
changes.

A plagiarized source code can be identified by its type of programming plagiarism
as demonstrated by [Roy and Cordy 2007], and there are four types of programming pla-
giarism and two categories. The types are referred to as type I, type II, type III, and type
IV. The categories based on similarity are textual and functional.

The type I are similar source codes except for modifications in its comments and
whitespace. The Figure 2 shows an example of two fragments of codes modificated by
comments and whitespace changes from type I. This type of plagiarism belongs to the
textual category since the modifications are textual and not functional.

The type II, illustrated by the Figure 2, stands for modification on variables such
as name changes, type changes, and literal changes. Furthermore, it might contain the
type I as well.

For the type III, source codes can suffer further modification such as insertion of
statements or a removal of statements. The Type I and II are also included. An example
of type III is shown in the Figure 2.

1353

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



Finally, the last type is the IV. It belongs to the functional similarity category
since the source codes might be different on the textual content of the codes, but their
functionalities are the same. It is the most difficult type to identify. The Figure 2 shows
an example of this type.

Figure 2. Examples of Source Code Plagiarism Types

There are other studies related to classifying the types of programming plagia-
rism as presented in [Sraka and Kaucic 2009]. However, in this presented work, the next
section utilizes the plagiarism types that have been shown in this background.

3. Evaluating Study
Our evaluating study is based on four different scenarios. Each scenario seeks to evaluate
the bioinformatics method for detecting a specific type of programming plagiarism, which
is presented in the background section of this paper. This evaluating study aimed to
answer two research questions:

• RQ1: Does the bioinformatics method identify the four specific types of source
code plagiarism?

• RQ2: Does the source code plagiarism detection with the bioinformatics method
have higher rate of similarity than JPLAG?

The bioinformatics method proposed by [Pedersen et al. 2012] can be abstracted
in 4 main sequential steps when applied to source code plagiarism area. The general
overview of the method is shown as an activity diagram in Figure 3. The step 1 is selecting
two source codes as digital artifacts. Step 2 is generating two synthetic DNA from the
digital artifacts. Step 3 is executing the alignment between two synthetic DNA. Finally,
step 4 is identifying the rate of similarity from the executed sequence alignment.

Figure 3. Bio-inspired method abstracted in four steps

In step 1, it is collected the source codes for detecting programming plagiarism.
A source code is a digital artifact, which is an input for generating a synthetic DNA

1354

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



sequence in the immediate next step. The step 2 is responsible for creating a synthetic
DNA sequence from these artifacts.

A synthetic DNA sequence is a chain of nucleotides as well as a regular DNA
sequence. However, it represents digital artifacts content and not living organisms. This
creation is made with a specific algorithm developed by [Pedersen et al. 2012]. All the
content of a digital artifact has its representation in ASCII binary code. For this reason,
every textual aspect of a source code, which is the actual content, has a representation in
binary. The size of each character in ASCII has one-byte size. A nucleotide is generated
by two contiguous bits following a specific mapping. The mapping of this method defines
the base “T” for bits “00”, “G” for bits “01”, “C” for bits “10” and “A” for bits “11”. Thus,
the algorithm works by mapping a character into four nucleotides as shown an example:
the word “if” in Figure4.

Figure 4. Mapping bits into nucleotides

In step 3, it is performed a sequence alignment for identifying similarities between
two synthetic DNA sequences. This process is made by a bioinformatics tool. In this
work, it is utilized the EMBOSS tool, even though the BLAST tool is a widely used
bioinformatics tool as shown in [Sawyer et al. 2019]. The preference for EMBOSS was
justified by the type of alignment, which is global. The BLAST tool is used for local
alignment, and this evaluating study uses a global alignment. The bioinformatics tools
provide a reporting about the alignment. This reporting is analyzed in the final step.

The last step, it analysis the reporting provided by the EMBOSS tool. One of
the parameters of the alignment result is the rate of similarity. This numerical similarity
value represents how similar two sequences are to each other. The goal is to identify a
percentage value which is capable of showing how similar two source codes might be. For
this reason, this parameter fits our needs in this application of the bioinformatics method
for detecting programming plagiarism. Therefore, the result of the detecting plagiarism
process, in this work, is based on the numerical value represented by the rate of similarity
parameter.

3.1. Test Scenarios

This evaluating study executed 20 times this bioinformatics method for detecting pro-
gramming plagiarism through 10 different source codes pairs as shown in Figure 5. Each
scenario contemplates a specific type of plagiarism in source code. This evaluating study
considers, in terms of analysis, just one test by scenario since the selected test can repre-
sent all related tests of the programming plagiarism type in question.

The selected tests for the four scenarios were extracted from the background sec-
tion of this research. The source codes pairs are represented by the Figure 2. The scenarios
I, II, III and IV represent plagiarism type I, II, III and IV, respectively. The next section
discusses the findings after performed the application of the method.

1355

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



Figure 5. Source codes pairs from set of tests

4. Results
In table 1 is shown the results of this evaluating study. Each result assesses a specific type
of programming plagiarism, which is identified by a rate of similarity in percentage. This
numerical value is obtained from the bioinformatics method and the JPLAG.

Table 1. Evaluating Study Results

Test Results
Scenario Type of Plagiarism Evaluated Method(%) jplag(%)
Scenario I Type I 72.6 90-100
Scenario II Type II 94.9 90-100
Scenario III Type III 80.5 0-10
Scenario IV Type IV 49.8 0-10

As proposed in the previous section, this study aimed to answer the following
research questions:

4.1. RQ1: Does the bioinformatics method identify the four specific types of source
code plagiarism?

For The type I, the evaluated method shows a rate of 72.6% of similarity between the
selected two source codes in scenario I. This result indicates the compromised ability
of this method to recognize precisely techniques related to variations in comments and
whitespace. This problem is justified by the feature of mapping every character of the
source code content. For this reason, whitespaces and comments are also mapped into a
nucleotide even though they should be irrelevant for the detecting process.

Although the method is still capable of recognizing programming plagiarism type
I as we can see at its rate of similarity, it could be improved by using source code nor-
malization filters. The use of a filtering process can eliminate unnecessary mapping of
bits into nucleotides. For instance, the comments or whitespaces could be ignored before
mapping a source code.

The evaluated method is able of recognizing the type II as shown in table I. The
rate of similarity is 94.9%, which indicates the precise recognition for this specific pro-
gramming plagiarism type. The techniques of changing variables are not sufficient to
confuse this method in the process of recognizing this type of plagiarism.

1356

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



In the plagiarism type 3, the evaluated method shows a rate of 80.5%. This result
ensures the potential ability of this method in recognizing further modification such as
insertion of statements or a removal of statements. Also, it demonstrates its efficiency to
handle type I and II at the same time the plagiarized source code utilizes techniques of
further modifications.

Lastly, the type 4 which is the most difficult plagiarism type according to
[Roy and Cordy 2007], the rate of similarity is 49.8%. This result indicates that changes
need to be addressed for improving the ability of the evaluated method for detecting this
type of plagiarism.

4.2. RQ2: Does source code detection with the bioinformatics method have higher
rate of similarity than JPLAG?

The result presented by the evaluated method for the plagiarism type I is 72.6%. However,
JPLAG identifies the same plagiarism type with a rate between 90% and 100%. In this
scenario, the JPLAG has a higher rate of similarity than the evaluated method.

For the scenario II, the evaluated method has a rate of 94.9%. The JPLAG identi-
fies a similarity range between 90% and 100%. Both plagiarism detection systems show
the same result, but the evaluated method is more specific.

While JPLAG has not identified plagiarism as expected for scenario III, the eval-
uated method recognizes a rate of 80.5%. The plagiarism type III is related to further
modification and not just basic techniques for confusing plagiarism detection systems as
the type I and II. The JPLAG considers the source code pair as being the lowest similarity
range, which is from 0% to 10%.

In the last scenario, the presented results are different for each plagiarism detec-
tion system. While the JPLAG has considered the lowest similarity range, the evaluated
method identifies a rate of 49.8% in similarity for the source code pair tested.

5. Implications of Bioinformatics for Computing Education
Nowadays, different studies have been proposed to innovate the educational scenario as-
sociated with teaching-learning processes. According to [Barbosa and Souza 2018], the
usage of software and automatic tools is a trend in the evolution of educational processes.
The support for pedagogical decision-making is only one of the potential applications
aided by using technology. This way, a Bioinformatics inspired method application for
helping professors with the problem of detecting source code plagiarism in student as-
signments from programming or related courses is useful. The benefits of such solutions
can be associated with the reduction of time-consuming and error-prone activities.

A solution based on bioinformatics is considered for solving the plagiarism de-
tection since this interdisciplinary field of science has been studying similarity problem
involving DNA and protein sequences. As a result, several efficient methods have been de-
veloped to compute how similar different sequences can be. By transforming source code
into biological sequences, it is possible to seize such tools to apply an efficient method to
detect programming plagiarism. The expected results are the possibility to detect differ-
ent types of plagiarism with a less computational cost. To confirm such an ideal goal, this
present work showed the application of a bioinformatics method to detect every type of
source code plagiarism following the classification indicated by [Roy and Cordy 2007].

1357

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



To seek for plagiarism in individual assignments from different students can be
a complex task, which consumes extra effort. An automatic tool for this purpose comes
in handy to avoid such problems aside from the elimination or reduction of academic
dishonesty that affects teaching-learning processes. However, the proposed tool has to
be capable of detecting as much as possible source code plagiarism types considering
the field of programming. Otherwise, the benefits cannot be viable since the quality of
the solution is compromised. As suggested for [Almeida et al. 2018], the indicators to
assess the quality of educational software is a form to validate a proposed solution such
a detector of plagiarism. One of the indicators is associated with the presence of failures,
by which in this context would demotivate professors. Furthermore, the students would
complain about the results of a low-quality programming plagiarism detector.

Once found a way to handle the programming plagiarism problem in education,
the professors can act to avoid and identify the motivations and reasons why their stu-
dents are committing plagiarism. Not to mention the fact that along the academic journey
of students, the awareness of legal and ethical aspects involved in plagiarism could be
increased as mentioned by [Mozgovoy et al. 2010] the importance of tackling it.

As pointed out by [Ribeiro et al. 2018b, Stadelhofer and Gasparini 2018], most of
the students have difficulty to learn programming, and others have no motivation because
they consider it as an irrelevant theme. Such thoughts contribute to raising academic
dishonesty on assignments and other obligations during a computing course. Additionally,
the advent of the internet allows anyone to find a potential solution for his academic
assignments by simply copying someone else’s work [Novak 2016].

To address the problem of difficulty, the usage of an automatic detector by pro-
fessors can be useful to identify potential students passing through this issue, and it is
possible to make an appropriate decision regarding to support those who are not under-
standing a subject covered in the plagiarized assignment. Likewise, it is helpful to use
such tool to prevent a student from failing a class since the same identified students are
likely to fail as stated by [Ribeiro et al. 2018a] a study about the importance to early pre-
dicts the potential failing students.

6. Concluding Remarks
This research aimed to verify the applicability of the bioinformatics method for detecting
source codes plagiarism, and its implications for computing education. According to the
evaluating study, the bioinformatics method shows its potential to contemplate all the
four specific types of source code plagiarism following the classification proposed by
[Roy and Cordy 2007]. In addition, the method has presented a higher rate of similarity
than JPLAG in specific scenarios of plagiarized source codes.

The proposed method has the potential to become an automatic tool for detecting
source code plagiarism. Such a tool can be useful to support professors in computing
and related courses by seeking plagiarism in students assignments and other class obli-
gations involving coding. The implications for computing education seems to be diverse,
and the direct benefits are the reduction of time-consuming and extra effort activities for
professors. Furthermore, the indirect benefits are the identification of potential failing
students, students with difficulty to learn programming and contribution to the formation
of students with legal and ethical awareness regarding academic dishonesty.

1358

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



As future work, we intend to propose a novel approach to detect source code
plagiarism based on the bioinformatics method applied in the present work. The main
goal of a novel method is to overcome the weakness of the evaluated method. Also, we
intend to evaluate the implications for computing education in a real-world scenario in
university courses based on empirical research.

Acknowledgment
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code 001

References
Almeida, A., Gomes, T., Leal, V., Gomes, R., and Leal, L. (2018). Indicadores para

avaliação de software educacional com base no guia gdsm (goal driven software mea-
surement). In Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educação-SBIE), volume 29, page 21.

Arya, G. P., Bharti, R. K., Prasad, D., and Garg, V. (2017). An improved method for dna
sequence compression. In 2017 2nd International Conference on Telecommunication
and Networks (TEL-NET), pages 1–4.

Barbosa, R. and Souza, R. (2018). Um levantamento dos determinantes de inovação em
softwares educacionais. In Brazilian Symposium on Computers in Education (Simpósio
Brasileiro de Informática na Educação-SBIE), volume 29, page 437.

Chuda, D., Navrat, P., Kovacova, B., and Humay, P. (2012). The issue of (software)
plagiarism: A student view. IEEE Transactions on Education, 55(1):22–28.

Hunter, L. E. (2012). The processes of life: an introduction to molecular biology. Mit
Press.

Jayapriya, J. and Arock, M. (2015). Pairwise local alignment using wavelet transform. In
2015 Annual IEEE India Conference (INDICON), pages 1–5.

Le Nguyen, T. T., Carbone, A., Sheard, J., and Schuhmacher, M. (2013). Integrating
source code plagiarism into a virtual learning environment: benefits for students and
staff. In Proceedings of the Fifteenth Australasian Computing Education Conference-
Volume 136, pages 155–164. Australian Computer Society, Inc.

Mozgovoy, M., Kakkonen, T., and Cosma, G. (2010). Automatic student plagiarism de-
tection: future perspectives. Journal of Educational Computing Research, 43(4):511–
531.

Novak, M. (2016). Review of source-code plagiarism detection in academia. In 2016 39th
International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pages 796–801. IEEE.

Orabi, E. S., Assal, M. A., Azim, M. A., and Kamal, Y. (2014). Dna fingerprint using
smith waterman algorithm by grid computing. In 2014 9th International Conference
on Informatics and Systems, pages PDC–74–PDC–79.

Parker, A. and Hamblen, J. O. (1989). Computer algorithms for plagiarism detection.
IEEE Transactions on Education, 32(2):94–99.

1359

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



Pedersen, J., Bastola, D., Dick, K., Gandhi, R., and Mahoney, W. (2012). Blast your way
through malware malware analysis assisted by bioinformatics tools. In Proceedings of
the International Conference on Security and Management (SAM), page 1. The Steer-
ing Committee of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp).

Prechelt, L., Malpohl, G., and Philippsen, M. (2002). Finding plagiarisms among a set of
programs with jplag. J. UCS, 8(11):1016.

Ribeiro, M., Paes, R., Neto, B. S., Pereira, J. L., Castro, T., and Gheyi, R. (2018a). 30
days after introducing programming: Which of my students are likely to fail? In
Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática
na Educação-SBIE), volume 29, page 1283.

Ribeiro, R. B., Fernandes, D., de Carvalho, L. S. G., and Oliveira, E. (2018b).
Gamificação de um sistema de juiz online para motivar alunos em disciplina de
programação introdutória. In Brazilian Symposium on Computers in Education
(Simpósio Brasileiro de Informática na Educação-SBIE), volume 29, page 805.

Roy, C. K. and Cordy, J. R. (2007). A survey on software clone detection research.
Queen’s School of Computing TR, 541(115):64–68.

Sawyer, S., Horton, M., Burdyshaw, C., Brook, G., and Rekapalli, B. (2019). Hpc-blast:
Distributed blast for modern hpc clusters. In Proceedings of 11th International Con-
ference, volume 60, pages 1–14.

Sraka, D. and Kaucic, B. (2009). Source code plagiarism. In Information Technology
Interfaces, 2009. ITI’09. Proceedings of the ITI 2009 31st International Conference
on, pages 461–466. IEEE.

Stadelhofer, L. E. and Gasparini, I. (2018). Ensino de algoritmos e lógica de programação
para os diferentes cursos: Um mapeamento sistemático da literatura. In Brazilian Sym-
posium on Computers in Education (Simpósio Brasileiro de Informática na Educação-
SBIE), volume 29, page 108.

Watson, J. D., Crick, F. H., et al. (1953). Molecular structure of nucleic acids. Nature,
171(4356):737–738.

Durić, Z. and Gašević, D. (2013). A source code similarity system for plagiarism detec-
tion. The Computer Journal, 56(1):70–86.

1360

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)


