
Giving Automated Feedback About Student Code Identifiers:
a Method Based on the Description of Programming Problem

Marcos Nascimento1, Eliane Araújo1, Dalton Serey1, Jorge Figueiredo1

1 Departamento de Sistemas e Computação
Universidade Federal de Campina Grande (UFCG) – Campina Grande, PB – Brasil.

{marcosantonio@copin,{eliane,dalton,abrantes}@computacao}.ufcg.edu.br

Abstract. Providing timely feedback on identifier naming to novice program-
mers can help them to improve their program readability. However, due to the
growth in the number of students learning to program nowadays, giving manual
feedback on identifier quality become prohibitive. In this paper, we propose a
method to automatically give this feedback which is correct 75.0% of the time in
contrast to the instructors’ assessment. We found that 51.7% of the students who
received automated feedback showed their program identifier quality improve-
ment by picking better names. It means that we can help students to improve
identifier naming and consequently, their program readability from early cod-
ing experiences.

1. Introduction
In computer programming, identifier naming is the process of choosing names to denote
code identifiers, which are constructions used to refer to, for example, variables and meth-
ods. Consequently, giving feedback on identifier quality assessment to novice program-
mers can help them to improve a fundamental tenet of software quality: their program
readability [Butler 2009]. However, it can be tedious, error-prone and inefficient for in-
structors to provide this feedback manually and in a timely manner. It can also become
strictly prohibitive considering the growth in the number of students learning to program
nowadays in programming courses [Wilcox 2015]. In this sense, generation automated
feedback on identifier quality assessment is essential to aid instructors in giving person-
alized one-to-one feedback.

In this paper, we propose an innovative method to generate automated feedback.
When answering the programming problem, we use the description provided by the in-
structor to assess the appropriateness of code identifiers chosen by students. The ra-
tionale behind this idea is simple: the description includes words which can be used
to construct appropriate code identifiers so that they communicate fundamental con-
cepts of the programming problem to the reader. In this sense, the more the code ex-
presses those concepts, the easier to read, understand, and maintain. Identifier naming
based on software specification, as we propose, is also a programming style recom-
mended in software engineering literature studies intended to improve identifier quality
[De Lucia et al. 2011, Lawrie et al. 2006, Evans and Szpoton 2015].

To provide automated feedback, we go through three steps. First, we use the
description of the programming problem to create the terms we use as the reference to
assess the appropriateness of code identifiers: the reference vocabulary. Second, we find
all of the student’s code identifiers constructed without the presence of using the terms

DOI: 10.5753/cbie.sbie.2019.537 537

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



of the reference vocabulary to obtain names considered to be inappropriate. After that,
we generate and provide feedback messages to the student, advising about names that
could be renamed to improve software quality. We evaluated the aforementioned method
conducting an in situ experiment in an introductory programming course to evaluate the
effectiveness of providing automated feedback in the students’ final code. We developed
IQCheck (Identifier Quality Check) as a proof-of-concept tool that instantiates our pro-
posal. The experiment results suggest that IQCheck feedback messages helps students
to improve their program identifier quality. We witnessed that the students who used
IQCheck tended to improve the appropriateness of their code identifiers, with 51.7% of
the students showing better names after receiving feedback messages.

2. Related Work
There are many studies in the area of computer science education that evaluate tools to
provide feedback on programming style. The works presented in these studies are re-
lated to ours regarding the intent to provide feedback on identifier quality assessment.
ASSYST [Jackson and Usher 1997], CheckStyle [CheckStyle 2001], PMD [PMD 2002],
STYLE [Rees 1982], Style++ [Ala-Mutka et al. 2004], among others, are tools similar
to each other in the sense that they are based on the identifier name length, in char-
acters, to provide feedback on inappropriate code identifiers. Our method differs from
these tools in its methodology in the sense that to provide this feedback, it is based on
the examination of student-written lexicons in code identifier constructions. Glassman
et al.’s [Glassman et al. 2015] work is the closest to ours with the intent to provide feed-
back on inappropriate code identifiers examining their constructions. But Glassman et
al.’s approach asks instructors to assess, through a user interface, the appropriateness of
student-chosen identifiers based on the values those variables can take during the pro-
gram execution. Our work is similar to the work presented in their study but differs in
its methodology in the sense that our work aims to generate automated feedback using
the description of the programming problem, without asking instructors to perform the
assessment.

3. Automated Feedback Generation Method
To provide automated feedback, we go through three steps. First, we apply normalization
on programming problem description to extract terms to compose a reference vocabulary.
The idea is to use this reference to find appropriate code identifiers’ names to student’s
programs. In other words, the words which could be chosen by a student to denote their
code identifiers when answering the programming problem. The normalization process
aims to create appropriate and relevant terms which could contribute to program read-
ability improvement and comprehension in a bottom-up manner as the description may
contain words with no relevant content or accented letters. As the first step of the normal-
ization, we apply tokenization to the description in order to extract and obtain the lexicons
denoting words. In sequence, we apply the transformation of words with capitalized and
accented letters into others with non-capitalized and non-accented letters, respectively.
After that, we apply the detection and removal of stop-words, which are words with little
lexical content (e. g. prepositions, articles, numbers, and punctuation marks). Stop-words
have no relevant or meaningful content to be written as identifiers within the code as they
are unrelated to the programming problem concepts. Besides stop-words, we apply the

538

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



detection and removal of special characters, words formed by letters repeated, followed
by numbers, and having a length less than two [Baeza-Yates and Ribeiro-Neto 1999]. Fi-
nally, we apply the stemming of resulting words converting plurals into singulars, trans-
forming conjugated verb forms into infinitives, and removing suffixes from adjectives.
We apply the stemming to these words as they may include plural words, conjugated
verbs, and adjectives, which are inflected words to their stem. For example, “counter”
and “counting” are two words inflected from the same stem, thus they would be trans-
formed into the unique stem “count” without their suffixes “er” and “ing”.

Second, we use the terms of the reference vocabulary to assess the appropriate-
ness of student-written code identifiers when implementing their program for the original
description. These are the steps of the process: Firstly, we apply the parsing of code to
extract and obtain the names denoting student-chosen identifiers. In sequence, we remove
duplicate names to apply the detection, division, stop-word removal of names composed
of two or more terms, used to construct the identifier, separated by using the underscore
or camel case separators. Secondly, we apply the stemming to resulting separated terms,
or names, to obtain stems from inflected terms. Then, we find all of the identifiers con-
structed without the presence of using at least one term of the reference vocabulary to
obtain names considered to be inappropriate. Finally, we generate and present warning
messages to the student, advising which it could rename those names by better ones ref-
erencing the description of the programming problem.

4. Descriptive Case Study
In this section, we describe a study performed to investigate and demonstrate we can use
the description of a programming problem for helping students to choose appropriate code
identifiers.

4.1. Methodology and Data Collection

In this study, we conjectured whether we can use the words obtained from the description
of a programming problem as the reference vocabulary for finding appropriate code iden-
tifiers. Considering this assumption, we examined whether using this vocabulary would
allow us to find appropriate code identifiers in contrast to the way instructors do. From
this point on, we will refer to the proposed method of finding appropriate code identifiers
in the student program, through checking the presence of using the terms of the reference
vocabulary, as “automated quality assessment”. Additionally, the human assessments are
those performed by the instructors of a programming course. Thus, the research ques-
tion that drove our study was: RQ1) Does automated quality assessment, to some extent,
resembles the human assessment in judging appropriate code identifiers? We evaluated
the judgment of appropriate code identifiers obtained from the automated quality assess-
ment in contrast to the study baseline using two traditional information retrieval metrics:
Precision and Recall. Precision measures, in the context of our study, the fraction of the
“number of identifiers classified as positive by the automated quality assessment, that are
true identifiers according to the study baseline” by the “total number of identifiers classi-
fied as positive by the automated quality assessment”. Precision computes the correctness
of the automated quality assessment in identifying true identifiers. Recall, on the other
hand, measures the fraction of the “number of identifiers classified as positive by the au-
tomated quality assessment, that are true identifiers according to the study baseline” by

539

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



the “total number of true identifiers according to the study baseline”. Recall computes the
completeness of the automated quality assessment when identifying true identifiers. The
evaluation of these aspects, correctness and completeness, will shed light on our research
question. These are the two concrete hypotheses we have formulated to evaluate the pro-
posed technique: (H11) The automated quality assessment has acceptable correctness,
considering its computed precision value; (H21) The automated quality assessment has
acceptable completeness, considering its computed recall value.

To reject or accept these hypotheses, we considered the opinion of instructors took
part in the study on how applicable are the levels of correctness and completeness of the
proposed technique in a programming course. The null hypothesis corresponding to each
alternative hypothesis listed above is that the values of the computed metrics could not be
considered adequate to reinforce correctness and completeness, respectively. We assign
the labels H10 and H20 to these hypotheses. In this sense, precision and recall are consid-
ered dependent variables in this study. The data corpus used in this study is composed of
125 identifiers from 58 functionally correct programs from an introductory programming
course at our university in the Fall 2017. These programs were implemented in answering
to a description written in Portuguese of a programming problem, asking the student to
implement a program to detect and inform the player who succeeds in placing “x” or “o”
in a horizontal, vertical, or diagonal row in an nxn grid recalling tic-tac-toe. The data col-
lection was done by using an automated test-based assessment system developed in-house
and tailored for the introductory programming course.

Initially, we invited five experienced instructors, from the same programming
course, to assess the quality of code identifiers. We conducted a survey questionnaire
asking, for each identifier, whether “(it) contributes to the program readability”. To cap-
ture the instructors’ opinions, this Likert-scale question, ranged from 1-5 score: “strongly
disagree (1); disagree (2); neutral (3); agree (4);” and “strongly agree (5)”. In our study
design, score corresponds to the independent variable. We used Cronbach’s alpha to mea-
sure and assess the inter-rater agreement level, or in other words, the internal consistency
degree of the scores assigned by the instructors. The resulting alpha value (Cronbach’s al-
pha of 0.854) was greater than 0.7 revealing that they have a high degree of agreement and
that the quality of identifiers was rated similarly across the instructors [López et al. 2015].
As each identifier was evaluated by five instructors, we used the median, a location sum-
mary statistic measure, to create an average composite score without skewing it by any
extremely large or small scores. After that, we classified all of the identifiers that obtained
a score greater than the neutral value as “true” and all other values as “false”. This gold-
standard of “true” or “false” to identify appropriate code identifiers is our study baseline,
it is used as an oracle of instructor-based identifier naming quality. In sequence, we used
the automated quality assessment to assess the same code identifiers, finding appropriate
and inappropriate identifiers. After that, we classified appropriate and inappropriate iden-
tifiers as “positive” and “negative”, respectively, to contrast the judgment of appropriate
code identifiers obtained from the automated quality assessment with the study baseline.

The illustration presented in Figure 1 shows an example of how the described
methodology was applied. The first oval represents six identifiers, obtained from the
data corpus used in this study, which are constructions used to refer to variables. The
terms “cont x”, “cont o”, “num bolas” and “valid”, on the sequence of the automated

540

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



assessment arrow, are classified as “positive”, meaning that they are appropriate identi-
fiers according to automated assessment. These identifiers are considered appropriate as
they have the presence of using terms such as “cont”, “num”, “bola” and “valid”, which
are part of the Portuguese-written description of the programming problem. The terms
“cont x”, “cont o”, “i” and “num bolas”, on the sequence of the instructors’ assessment
arrow, are classified as “true”, meaning that they are appropriate identifiers according to
human assessment. Summarizing the comparative analysis of both assessment methods,
the identifiers classified as “positive” and “true” are contrasted on the sequence of the
intersection arrow. The terms “cont x”, “cont o” and “num bolas” are “true positive”
(tp) identifiers, meaning that they are appropriate identifiers according to both assessment
methods. The term “i” is a “false negative” (fn) identifier, meaning that even though it is
classified as “true” by the instructors, it is classified as “negative” by the proposed auto-
mated assessment method. Conversely, the term “valid” is a “false positive” (fp) identifier,
although it is classified as “positive” by the automated assessment, it is not classified as
“true” by the instructors. Finally, the term “p” is a “true negative” (tn) identifier, meaning
that it is a inappropriate identifier according to both assessment methods.

Figure 1. Contrasting instructors’ manual assessment with the automated quality
assessment

4.2. Results and Discussion

As a result of the comparison, we calculated the number of identifiers considered to be
true positives (tp=57), false positives (fp=19), false negatives (fn=12) and true negatives
(tn=37). Based on this data, we calculated the value of precision (p = tp

tp+fp
= 75.0%)

and recall (r = tp
tp+fn

= 82.6%). In order to gather statistical evidence, we studied these
data estimating precision and recall values. Initially, we used the ordinary nonparamet-
ric Bootstrap method to recalculate precision and recall values 2000 times by resampling
identifiers classified as tp, fp, fn, and tn from the original set of identifiers, with replace-
ment. From these values, we computed the Bootstrap confidence intervals of these metrics
using the bias-corrected and accelerated method (bca). From the confidence interval anal-
ysis, we obtained a precision value of (bca = [63.7%; 83.5%], 95.0% confidence level)
and a recall value of (bca = [71.8%; 90.4%], 95.0% confidence level).

From these values, we can observe that in our proposed automated assessment
method, completeness is greater than correctness as the estimated recall value is rela-
tively greater than the estimated precision value. Moreover, we emphasize that the val-
ues of correctness and completeness are relatively close to totality (greater than 63.0%),
which means that this is a promising method for finding appropriate code identifiers. Con-
sidering the correctness aspect, we can state with adequate statistical significance that the

541

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



proposed automated assessment can correctly find most of the appropriate identifiers clas-
sified by the human assessment. Additionally, considering the completeness aspect, we
can state that the proposed method can correctly find most of the appropriate identifiers
in contrast to the human assessment. For these data, this means that there is evidence
that the automated quality assessment, to some extent, resembles the human assessment
in judging appropriate code identifiers, considering both the correctness and complete-
ness aspects. In addition, according to instructors took part in the study, the proposed
method has acceptable levels of correctness and completeness. In consequence, we reject
the H1 and H2 null hypotheses in favor of the alternatives. We manually examined iden-
tifiers considered to be fn and fp to better understand why the judgment of the automated
quality assessment differed from the human assessment. The first differed from the lat-
ter, showing fn identifiers, in assessing the appropriateness of identifiers using acronyms,
abbreviations, synonyms, English terms, and single letters. On the other hand, the first
differed from the latter, showing fp identifiers, in assessing identifiers with misleading
acronyms, two or more vague words, and inappropriate naming convention.

5. Experiment

In this section, we describe an experiment conducted to investigate and demonstrate
that we can help students to improve the appropriateness of their code identifiers giv-
ing automated feedback. We report on the experience of using IQCheck as the proof-of-
concept tool that instantiates the method detailed in Section 3 to provide feedback using
Portuguese-written descriptions of programming problems.

5.1. Methodology and Data Collection

In this study, we conjectured whether we can use IQCheck to provide feedback mes-
sages for helping students to improve the appropriateness of their code identifiers. The
rationale behind this proposal is that IQCheck feedback messages can advise students on
which their code identifiers could be renamed picking more appropriate names. Thus,
our experiment was carried out to answer the following research question: RQ2) Does
IQCheck feedback messages help students to improve the appropriateness of their code
identifiers? We evaluated how effective are IQCheck feedback messages at helping stu-
dents for identifier appropriateness improvement using two metrics: rai and ∆rai. For a
given student program, rai (the ratio of appropriate identifiers) measures the fraction of
the “number of identifiers classified as appropriate by IQCheck” by the “total number of
identifiers.” It computes the ratio of identifiers classified as appropriate within the student
code. Additionally, for a given pair of student programs, ∆rai measures the difference
between the calculated rai metric value of the last and first correct functionally program.
It computes the difference ratio of identifiers classified as appropriate between the last
and first correct program. If ∆rai value is greater than zero, then it means that the number
of appropriate identifiers within the last correct program is higher than in the first one,
meaning that the student managed to work to deliver more appropriate identifiers.

Initially, we invited 58 students, randomly divided into control and experimental
groups, to develop programs for descriptions of programming problems, thoroughly test
them, and make sure they were functionally correct. The motivation behind this is that it
did not make sense to over-work the student with identifier appropriateness improvement

542

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



before they had made their program effectively work, recalling the test-driven develop-
ment mantra Red Bar/Green Bar/Refactor. In sequence, we invited the students from
both groups to improve on the appropriateness of their code identifiers choosing names
based on the given programming problem description. We then evaluated the effective-
ness of providing IQCheck feedback messages to the students of the experimental group
in contrast to the students of the control group. The students taking part in this study were
enrolled in the same course mentioned in Subsection 4.1 in the Spring 2018, most of them
were male (86.2%), and their ages were between 17 and 46. The data corpus used in this
study is composed of 231 functionally correct programs implemented by these students in
the middle of July 2018. These programs were tested and collected using the automated
test-based assessment system used in the course. Those programs were included in our
data corpus as the students consented to take part in this study and filled out appropriate
forms approved by the committee of ethics at our university.

To provide automated feedback generation, as the first step, we instrumented the
automated test-based assessment system used in the course and plugged into it IQCheck.
In sequence, we chose descriptions of programming problems, which are traditionally
used by the instructors in the course, and used IQCheck to create files having the reference
vocabulary of each one of those descriptions. After that, we sent those files to the working
directory of the students of the experimental group so that IQCheck could generate feed-
back messages after their request. Whenever the student requests IQCheck feedback mes-
sages, IQCheck uses a Python module, Abstract Syntax Trees (AST) [AST 1990], to parse
the code and an implemented algorithm to extract the names denoting student-written
identifiers. To create the file with the reference vocabulary, IQCheck uses Python mod-
ules of Natural Language ToolKit (NLTK) [NLTK 2001] such Tokenize [Tokenize 2001]
to tokenize the description, NLTK’s list of Portuguese stop-words to detect and remove
stop-words, and RSLP Portuguese stemmer [RSLP 2001] to stem words. In addition,
IQCheck uses a Python built-in method to convert words with capitalized; Unidecode
module [Unidecode 1990] to convert words with accented letters; and RegEx module
[RE 1990] to detect and remove special characters, words formed by letters repeated, fol-
lowed by numbers, and having a length less than two.

5.2. Results and Discussion

We examined the ∆rai metric values computed on the last and first correct programs of the
students. As a result of the comparison between the groups, we found the computed ∆rai

metric values of the programs of the experimental group were higher than the computed
∆rai metric values of the programs of the control group. It means that the students of
the experimental group delivered more appropriate code identifiers in comparison to the
students of the other group. To evaluate whether the control and experimental groups
have the same ∆rai value distribution, we examined whether ∆rai value distributions of
both groups differ their median value. To estimate this difference value, we applied the
ordinary nonparametric Bootstrap method to compute the Bootstrap confidence interval
of the difference based on 2000 resampling using the first order normal approximation
method (ona). From the confidence interval analysis, we obtained a difference value of
(ona = [-48.2%; -26.7%], confidence level 95.0%), which means that the ∆rai values of
the experimental group are higher on average than the ∆rai values of the other group.

From this difference value, we can state with adequate statistical significance that

543

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



there is a significant and relevant difference between the groups. For these data, this
means that there is evidence that IQCheck feedback messages are useful and adequate for
helping students to improve the appropriateness of their code identifiers. After receiving
IQCheck feedback messages, 15 students (51.7%) of the experimental group were able
to choose better names to denote their code identifiers. In contrast with the other group,
this number corresponds to five times the number of students - 3 (10.3%) - who were able
to improve their code identifiers’ names without receiving IQCheck feedback messages.
The last and first correct programs implemented by these students revealed ∆rai values
greater than zero. In Table 1, we show some lines of the description of a programming
problem translated from the original Portuguese-written description to English. In an-
swering to the description showed in Table 1, a student could choose names, to construct
their code identifiers, based on words such as “group”, “number”, “team”, “spectator”,
and “stadium”. In Figure 2, we show the first version of the program implemented by a
given student in answering the original description, along with the feedback messages it
received, in contrast to the second version of the same program.

Table 1. Description of ”Largest Fan Group” Programming Problem

In the greater city of the northeastern interior, the competition for the largest fan group of
the state is competitive. To solve this issue, it is required that you implement a program
that reads the number of first team’s spectators in 5 stadium stands and the number of sec-
ond team’s spectators in same 5 stadium stands. You must sum the number of spectators
from each team and print the team that brings more spectators into the stadium.

Figure 2. When the student requested feedback messages, IQCheck provided
the warnings showed in (b) regarding the identifiers in lines 2, 3, 4, 5, 7
e 8, as they were not based on words of the original Portuguese-written
description. In addition to these identifiers, IQCheck could have marked
as inappropriate others such as “cont torcida1”, “time1”, “digito”, “num1”,
and “setor5”. (c) shows the program after the student actuated on the one
showed in (a), renaming the identifier name in line 2 from “a” to a more
appropriate: “torcida a”.

Listing 1. (a)

1 #coding: utf-8
2 a = 0
3 b = 0
4 for i in range(5):
5 ent = int(...
6 a += ent
7 for k in range(5):
8 ent = int(...
9 b += ent

10 ...

Listing 2. (b)

- *a* does not appear
to be a suitable name
. You should use word
s from the programmin
g assignment descript
lion.
- *i* does not app...
- *k* does not app...
- *b* does not app...
...

Listing 3. (c)

1#coding: utf-8
2torcida_a = 0
3b = 0
4for i in range(5):
5ent = int(...
6torcida_a ...
7for k in range(5):
8ent = int(...
9b += ent
10...

6. Discussion
Although identifier quality does not affect the program behavior, giving feedback on the
quality of student-chosen identifiers can help to improve novice programmer training.

544

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



When answering the programming problem, the feedback allows students to reflect and
improve on the names chosen by them to denote their code identifiers. The cycle request
the feedback/receive/rename identifiers allow students to learn a good programming style,
as they are pushed to improve identifier naming and their program readability. Although
we had encouraged students to request the feedback after they had made sure their pro-
gram was correct functionally, it also can be offered to functionally incorrect programs.
In this case, we believe that the feedback allows students to understand why their code is
wrong through the exercise of reading and renaming their code identifiers. It is important
to observe that the proposed feedback does not intend to provide an exhaustive analysis of
the appropriateness of identifiers, taking into account aspects such as the role, data type
or relation with other identifiers which may be synonyms in the program. For this motive,
the proposed method does not intend to make the distinction between words which are
more relevant to denote identifiers than others, as it does not intend to check terms of high
semantic relevance of the programming problem description. We believe that the code
identifier quality issues of the programs we evaluated in this study are, in significant part,
of the readability nature. However, as our empirical studies were not intended to prove
this assumption, it is only an anecdotal suspicion that requires further analysis.

7. Threats to Validity
Human factors threaten our study validity as we invited instructors of a programming
course to assess the quality of code identifiers (threat to construct validity) in different
moments (threat to internal validity). Also, we used instructor-written descriptions of
programming problems for finding appropriate code identifiers’ names (threat to con-
struct validity). The two first threats are mitigated as we shared the same assessment
criterion with instructors and evaluated the inter-rater agreement level, respectively. The
latter threat is diminished as the descriptions used were understandable, well-written, and
complete according to the instructors. Although the conclusions should not be general-
ized to every course (threat to external validity), the ideas and methods proposed in this
study can be adapted in different contexts. In this sense, we expected that instructors from
other programming courses must take caution when applying the findings of this study.

8. Conclusion
We set out to provide timely feedback on identifier quality assessment so that we could
help students to choose better names. To attain this aim, we proposed a method based
on the description of programming problem. We performed a study to investigate and
demonstrate that we can use this description to automatically find appropriate code iden-
tifiers in contrast to the way instructors do. After that, we conducted an experiment in
a programming course to examine and prove that automatic feedback effectively helps
students to improve on the appropriateness of identifiers at giving advice on which names
could be renamed to improve software quality. The bottom line of this paper is that we
can improve novice programmer training, giving students feedback about their code iden-
tifiers to improve identifier naming and their program readability.

References
Ala-Mutka, K., Uimonen, T., and Jarvinen, H.-M. (2004). Supporting students in c++ pro-

gramming courses with automatic program style assessment. Journal of Information
Technology Education: Research, 3(1):245–262.

545

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



AST (1990). Abstract syntax trees. https://docs.python.org/2/library/
ast.html. [Online; accessed 26-January-2019].

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern information retrieval. addison-
wesley.

Butler, S. (2009). The effect of identifier naming on source code readability and quality.
In Proceedings of the Doctoral Symposium for ESEC/FSE on Doctoral Symposium,
ESEC/FSE Doctoral Symposium ’09, pages 33–34, New York, NY, USA. ACM.

CheckStyle (2001). http://checkstyle.sourceforge.net/. [Online; acessed
1-June-2019].

De Lucia, A., Di Penta, M., and Oliveto, R. (2011). Improving source code lexicon via
traceability and information retrieval. IEEE Trans. Softw. Eng., 37(2):205–227.

Evans, E. and Szpoton, R. (2015). Domain-driven design. Helion.

Glassman, E. L., Fischer, L., Scott, J., and Miller, R. C. (2015). Foobaz: Variable name
feedback for student code at scale. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software &#38; Technology, UIST ’15, pages 609–617, New York,
NY, USA. ACM.

Jackson, D. and Usher, M. (1997). Grading student programs using assyst. In ACM
SIGCSE Bulletin, volume 29, pages 335–339. ACM.

Lawrie, D. J., Feild, H., and Binkley, D. (2006). Leveraged quality assessment using
information retrieval techniques. In 14th IEEE International Conference on Program
Comprehension (ICPC’06), pages 149–158.

López, X., Valenzuela, J., Nussbaum, M., and Tsai, C.-C. (2015). Some recommendations
for the reporting of quantitative studies. Computers & Education, 91(C):106–110.

NLTK (2001). Natural language toolkit. http://www.nltk.org/. [Online; accessed
26-January-2019].

PMD (2002). A static source code analyzer. http://pmd.sourceforge.net/.
[Online; accessed 1-June-2019].

RE (1990). Regular expression. https://docs.python.org/2/library/re.
html. [Online; accessed 28-March-2019].

Rees, M. J. (1982). Automatic assessment aids for pascal programs. ACM Sigplan No-
tices, 17(10):33–42.

RSLP (2001). Stemmer. https://www.nltk.org/_modules/nltk/stem/
rslp.html. [Online; accessed 6-April-2019].

Tokenize (2001). Tokenizer. https://www.nltk.org/api/nltk.tokenize.
html. [Online; accessed 6-April-2019].

Unidecode (1990). Ascii transliterations of unicode text. https://pypi.org/
project/Unidecode/. [Online; accessed 6-April-2019].

Wilcox, C. (2015). The role of automation in undergraduate computer science education.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE ’15, pages 90–95, New York, NY, USA. ACM.

546

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)


