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Abstract. Structured Query Language (SQL) is an essential topic in introduc-
tory database courses. Despite its declarative syntax, SQL query specification
can be confusing. Visual Query Languages (VQLs) are an alternative to reduce
this complexity. However, these VQLs do not cover many complex constructions.
To overcome this limitation, we present the Diagrammatic SQL (DSQL). Be-
cause increased Mental Workload (MW) during task performance may increase
fatigue and facilitate errors, our objective is to investigate the MW impact of
DSQL on the understanding of SQL queries. In this experiment, we compare
the accuracy, time, and ease-of-understanding complex queries using both lan-
guages. The results indicate that there is no significant difference.

1. Introduction
In academics, the most important computer science university curricula
[ACM/IEEE 2013, ACM/IEEE 2017] recommend the teaching of Structured Query
Language (SQL). In the industry, SQL is the default language for querying relational
databases and its use as a query interface for non-relational database (e.g., Spanner or
Spark) is increasing. Moreover, in 2018, SQL remains the second most-used language
for the second consecutive year and is among the most popular languages for Web
developers (2nd place), desktop developers (1st place), system administrators/DevOps
(2nd place), and data scientists (2nd place) [StackOverflow 2018]. In other words, SQL
is a relevant and widely-used language in both academics and industry.

Although the basic syntax of SQL is easy to understand, specifying queries that
use complex constructs is a non-trivial task. That is, whenever a query has at least
one of the following constructs, it can be considered complex, and will therefore re-
quire greater intellectual and technical effort: 1) subquery (correlated or non-correlated)
[Czejdo et al. 1993, Kawash 2004, Zhang et al. 1999, Catarci and Santucci 1995]; 2) join
(Cross, Natural, Inner, or Outer) [Catarci and Santucci 1995]; 3) set operation (Union,
Except, and Intersect) [El-Mahgary and Soisalon-Soininen 2015]; 4) conditional ex-
pression (Case clause) [Gryz et al. 2008]; and 5) grouping restriction (Having clause)
[Zhang et al. 1999].

Considering that SQL queries can involve complex constructs, a Visual Query
Language (VQL) is an alternative that can reduce this complexity (cf. Section
2.1). Despite the potential advantages of VQLs, in practice, they do not cover most
of the complex constructs of SQL. This is confirmed by [Abouzied et al. 2012] and
[Bakke and Karger 2016], who state that, although there have been recent studies of VQL,
little has been done to improve then since the initial proposals. To mitigate this problem,
we present the graphical notation for Diagrammatic Structured Query Language (DSQL)
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(cf. Section 3), a VQL that aims to be a visual alternative for modeling complex queries
in SQL. As a VQL, DSQL promotes the development of creative and critical thinking by
providing visual abstractions that can help improve reasoning and problem-solving skills
before coding in SQL.

Mental Workload (MW) is characterized as a reflection of mental stress related to
a task performed, its environment, and its specific operating conditions, along with the
worker’s ability to respond to these demands [Cain 2007]. In general, the mental work-
load associated with an easy task is low, whereas difficult tasks produce a higher mental
workload. Increased mental workload during the performance of a task may increase
fatigue and facilitate the commission of errors [Cain 2007, Longo 2015]. In this paper,
our objective is to investigate the MW impact of DSQL on the understanding of SQL
queries. In an experiment, we compare the accuracy, time, and ease-of-understanding of
complex queries using both languages. To compare the ease-of-understanding, we used
NASA-TLX (cf. Section 2.2) because it is one of the most commonly-used instruments
for measuring subjective MW [Cain 2007].

The remainder of this paper is organized as follows: Section 2 introduces the
main concepts related to Visual Query Languages and NASA-TLX; Section 3 specifies
the DSQL notation; Section 4 shows an overview of the main related proposals; Section
5 discusses our experimental evaluation; and Section 6 presents our final considerations.

2. Background

2.1. Visual Query Language

Visual Query Language (VQL) is an alternative that promotes the understanding and crit-
ical analysis of complex queries by using visual abstractions. That is, different from SQL
textual representation, VQL graphical abstractions help to focus on the semantic aspects
of the query rather than on its syntax [Catarci and Santucci 1995, Hvorecký et al. 2010].
It is possible to produce a VQL with only pen and paper, however, a VQL is more
powerful when it is implemented by a Computer-Aided Software Engineering (CASE)
tool, because these tools facilitate interaction with the VQL notation and can prevent
or detect errors and generate software artifacts (e.g., source code or documentation)
[Brambilla et al. 2017]. In this context, it is important to highlight that, before developing
the CASE tool, the VQL graphical notation must be specified.

2.2. NASA-TLX

The NASA Task Load Index (NASA-TLX) [Hart and Staveland 1988] is a multidimen-
sional evaluation procedure that provides an overall workload score based on a weighted
average of evaluations in six dimensions: mental, physical, and temporal task demands;
and effort, frustration, and perceived performance. The NASA-TLX is applied two steps:
scoring and weighting. In the scoring phase, the participant should assigns a value on a
scale of 0 to 100 for the workload in each of the six dimensions. The scale is divided into
intervals of five units. In the weighting phase, the participant defines the relevant load fac-
tors. The participants are presented with fifteen binary comparisons of the six dimensions
and must choose which of each pair he perceives as the largest source of load. This makes
it possible to weight each of the factors as a function of the number of times it appears.
Each factor can receive a weight from zero (it does not even appear once and therefore
is not considered relevant) up to five (the factor was chosen every time and therefore is
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considered the most important load source). The number of times each factor is selected
is counted. The score obtained from the first phase of the method (converted to a scale of
100) is then multiplied by the value obtained from the weighting phase for each dimen-
sion. Dividing the sum of all values by 15 (the total number of binary combinations) gives
the weighted average of the global workload for the task studied.

3. Diagrammatic Structured Query Language
Figures 1, 2, 3, and 4 show the DSQL notation, which is based on the diagrammatic
representation of the UML Class diagram, using the following representations: boxes,
compartments, and links.

Figure 1. Query, Column, Source, and SubqueryLink constructors.

Figure 1 presents the Query, Column, Source, and SubqueryLink constructors of
DSQL. The Query constructor (Figure 1-a) can represent either a query or a subquery.
This constructor has four compartments. The top compartment has a label formed by the
query description, its minimum and maximum result limits ([Min“:”Max]), and whether
or not it is distinct ([“#”]). The other three compartments, from top to bottom, map the fol-
lowing concepts, respectively: Select, From, and Where/Having. The Column constructor
(Figure 1-b) can represent a field (boldface – Figure 1-e), a free expression (regular font
– Figures 1-f and 1-g), a conditional expression (Figure 2), or a subquery (Figure 1-i).
When Column is used in the Select compartment, a group position ([“(”GP“)”]), an order
position (OP), and a sort type (ST - [“[”OP ST“]”]) can be set. The sort type can be as-
cending = ↑ or descending = ↓. We highlight the following restrictions: (1) The column
order in the Select compartment (from top to bottom), the number in the parentheses,
and the number in the brackets define the positions of Select, Group By, and Order By,
respectively; (2) Free expressions must follow the rules of the DBMS and can be used
to write any SQL function, operation, or literal; and (3) when a free expression with an
aggregate function is specified in the Where/Having compartment, this grouping restric-
tion will be mapped to a condition in the Having clause. The Source constructor (Figure
1-c) can be used to represent a table (Figure 1-h) or a subquery. When a source element
(SE) is a table, its label must describe the name of the table, otherwise, its label will be
empty. In both cases, an alias (Al) is optional (“|”SE[“:”Al]“|”). The SubqueryLink (Fig-
ure 1-d) constructor connects the Column or Source constructors to a subquery, showing
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the subset/inclusion relations. When a SubqueryLink is connected to a Column, an arith-
metic or comparative operation can be specified in the label. The right side of Figure 1
shows a query using these DSQL constructors and its representation in SQL. This query
answers the following question: “What are the top ten departments with the most em-
ployees who receive more than the average department salary, ordered by total number
of employees?”.

Figure 2. Constructors for logical connectors and conditional expressions.

Figure 2 presents the logical connectors and conditional expression constructors of
DSQL. When a logical expression has many operations, a visual resource that makes un-
derstanding easier is the modularization of its operations using logical connectives. In this
sense, three constructors are required: (1) LogicalConnective (Figure 2-a), a constructor
that indicates a logical connective to be used; (2) LogicalExpression (Figure 2-b), a con-
structor that gathers the set of conjunction or disjunction operations; and (3) LogicalLink
(Figure 2-c), a constructor that shows the execution sequence of the logical connectives.
The LogicalConnective constructor has only one compartment, containing a label. Be-
ing a Column constructor, this label contains the group position, order position, and sort
type. However, the label does not have the column element properties. The LogicalEx-
pression constructor has two compartments. The upper one specifies whether the logical
expression is a set of conjunctions or disjunctions, as well as their negations ((“AND”
| “OR”)[“!”]). The lower compartment gathers the set of logical operations. Because
a conditional expression can also have many operations, its graphical notation is also
based on boxes, compartments, and links to modularize its operations. Four construc-
tors are required to specify conditional expressions: (1) ConditionalConnective (Figure
2-d), whose label is equal to LogicalConnective; (2) When (Figure 2-e), which has three
compartments: the first corresponding to its name (“WHEN”), the second used to express
a logical expression to be evaluated, and the third to specify a DSQL constructor (e.g.,
field, subquery, free expression, or another conditional expression) to be executed when
the logical expression is true; (3) Else (Figure 2-f), which has two compartments: the first
corresponding to its name (“ELSE”) and the second used to specify a DSQL constructor
that will be executed if no When logical expressions are true; and (4) CaseLink (Figure
2-g), which shows the CASE execution sequence. The right side of Figure 2 illustrates
a DSQL query that uses these constructors and shows their respective representations in
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SQL. This query answers the following question: “What would the wage level of male
employees over 30 who work in department D1 or D2 be, where Levels 1, 2, and 3 had
wage ranges of: greater than 3000, greater than 2000, and less than or equal to 2000,
respectively?”.

Figure 3. Constructors for join and set operations.

Figure 3 presents the join and set operations constructors of DSQL. A join is spec-
ified with the JoinLink constructor (Figure 3-a), which can abstract a join (i.e., Inner join,
Left outer join, Right outer join, or Full outer join), a manipulation of a join (i.e., Left
excluding join, Right excluding join, or Full excluding join), or a pseudo-join (i.e., Semi
join, Anti join, or Division) (Figure 3-c). When it is necessary to specify a Theta join
or Equi join whose condition is not based on primary or foreign keys, the ConditionLink
(Figure 3-b) constructor must be used to specify these particular conditions. Set oper-
ations are specified with the SetLink (Figure 3-d) constructor. This constructor allows
two queries to be connected and defines whether the set operation (i.e., Intersect, Union,
Except, or Exclusive Union – Figure 3-e) is distinct ([“#”]). The right side of Figure 3
illustrates a DSQL query that uses these constructors and shows their respective represen-
tations in SQL. This query answers the following question: “Which employees have no
department and which departments have no employees?”.

Figure 4. Constructors for Unary, Binary, and Ternary operation.

When all operands of an arithmetic, logical, or comparative operation are sub-
queries or conditional expressions, the UnaryOperation (Figure 4-a) (e.g., is null), Bi-
naryOperation (Figure 4-b) (e.g., +), or TernaryOperation (Figure 4-c) (e.g., between)

243

Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019)
VIII Congresso Brasileiro de Informática na Educação (CBIE 2019)



constructors must be used. The label for these constructors follows the same syntax as
that of the Column constructor. The right side of Figure 4 shows a DSQL query that uses
these constructors and their respective representations in SQL. This query answers the
following question: “Who are the male employees with a salary between the minimum
and the maximum salary of the female employees?”.

4. Related studies
We used the ScienceDirect, SpringerLink, ACM, and IEEE Xplore libraries to execute
the following search string: “(SQL AND (“complex query” OR “complex queries” OR
subquery OR subqueries) AND (visual OR graphic OR graphical))”. The term SQL re-
stricts the search to this language. The terms complex query, complex queries, subquery,
and subqueries restrict the search to proposals that address complex SQL constructs. The
terms visual, graphic, and graphical limit the search to visual approaches. Note that this
search string does not consider the terms join, having, or case because they are too broad,
nor the term conditional expression because they are too restrictive. In the following para-
graph, we present a summary of the best three articles found in the literature, because they
are the ones that support most complex SQL constructs.

The SIEUFERD [Bakke and Karger 2016] is a form-based VQL that specifies
queries by directly manipulating nested relational results, and by using spreadsheet id-
ioms such as formulas and filters, the user can express a relationally complete set of query
operators plus calculation, aggregation, outer joins, sorting, and nesting. The GraphSQL
[Cerullo and Porta 2007] is a diagram-based VQL that specifies queries using geometric
shapes and links: data sources are grids; attributes are circles; conjunctions are rectangles;
disjunctions are ellipses; operators are parallelograms; aggregation functions are trian-
gles; grouping and constants are small rectangles; joins are hexagons; and, finally, dotted
lines connect data sources with attributes. The ConQuer-II [Bloesch and Halpin 1997] is
a hybrid VQL (based on forms and icons) that specifies queries using elementary rela-
tionships; operators such as and, or, not, and maybe; contextual for-clauses; and object-
correlation, thereby avoiding the need to deal explicitly with implementation details such
as relational tables, null values, outer joins, group-by clauses, or correlated subqueries.

A comparative analysis of the expressiveness of DSQL with its principal related
studies shows that: (1) all languages support correlated subquery, Inner Join, and Outer
Join; (2) only GraphSQL, ConQuer-II and DSQL support non-correlated subquery, group-
ing restrictions, and subqueries in the Where clause; (3) only SIEUFERD, GraphSQL and
DSQL support set operations; (4) only SIEUFERD and DSQL support subqueries in the
Select clause; (5) only GraphSQL and DSQL support subqueries in the Having clause; (6)
only DSQL supports: conditional expressions (Case/When) and subqueries in the From
clause; and (7) no languages support subqueries in the Order By clause. Although no
language covers all characteristics, DSQL is the most expressive language because it sup-
ports at least 50% more characteristics than its main competitors.

5. Experiment evaluation
The goal of our experiment was to analyze whether DSQL has the potential to be as
efficient and easy to understand as SQL. Our experiment focuses on SQL, because the
related proposals have drawbacks when compared with DSQL (cf. Section 4) and DSQL
is as expressive as SQL (cf. Section 3). In this context, we define the null (H0) and
alternative (H1) hypotheses:
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H0: DSQL does not have the potential to be as efficient and easy to understand as SQL.

H1: DSQL have the potential to be as efficient and easy to understand as SQL.

We experimented with 12 undergraduate students from a database course at our
university, where seven students had some knowledge of SQL, five students had no knowl-
edge of SQL, and no one knew DSQL. The experimental design was built using a ran-
domized paired comparison design with two treatments on one factor [Wohlin et al. 2012]
to avoid bias, where the participants were randomly selected to one of the two teams (A
or B). Before starting the experiment, each participant signed a letter of consent1 and
received a 6-hour SQL course2. In this course, we presented the DSQL language as an
auxiliary tool to help understand SQL concepts. During the experiment, each participant
analyzed six complex queries (three SQL + three DSQL3) and choose one out of four
possible alternatives. That is, only one answer could be selected. We recorded the an-
swers and the time taken for each question. After answering the three questions in each
language, participants completed a NASA-TLX questionnaire to collect feedback on their
perceptions of the task they had just completed. Furthermore, no answer feedback and no
help were given for the participants because this could threaten the validity of the results.

Table 1. Descriptive statistics.
Team Part Notation Questions Successes Proportion

(Accuracy)
Mean
(Time)

S.D.
(Time)

S-W
(Time)

Mean
(Ease)

S.D.
(Ease)

S-W
(Ease)

A 6 SQL 18 15 0.83 257.94 122.07 .116
6 DSQL 18 12 0.67 243.35 86.87 .991

B 6 SQL 18 8 0.44 249.78 151.43 .124
6 DSQL 18 9 0.50 269.73 159.59 .163

All 12 SQL 36 23 0.64 255.10 129.59 .132 52.3 17.6 .529
12 DSQL 36 21 0.58 254.65 120.48 .317 49.6 20.9 .571

Table 2. Statistical tests scores

Team
Two-proportion z-test Welch t-test (Time) Welch t-test (Ease)

Statistic DF Significance Statistic DF Significance Statistic DF Significance

A 0.593 1 .441 0.362 24.73 .720
B 0 1 1 0.264 14.92 .795
All 0.058 1 .809 0.012 41.983 .991 0.3383 21.391 .738

Table 1 presents the descriptive statistics for the accuracy, time, and ease-of-
understanding metrics. The Part, Questions, and Successes columns contain the number
of participants, the number of questions these participants answered per notation, and
the number of correct answers from these participants, respectively. The Proportion (ac-
curacy) column contains the proportion of correct answers (Successes divided by Ques-
tions). The last six columns contain the mean (Mean), the standard deviation (S.D.), and
the p-value of the Shapiro-Wilk (S-W)) normality tests, the first three related to the mean
time of the correct answers and the last three related to the mean ease-of-understanding.
Based on the normality tests, we suggest normality on the mean time of the correct an-
swers and on the mean ease-of-understanding (α = 0.05).

1The letter of consent is available at https://dsqlcase.github.io/experiment/consentletter.pdf
2The material is available at https://dsqlcase.github.io/experiment/course.pdf
3The questions are available at https://dsqlcase.github.io/experiment/questions.pdf
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We used the two-proportion z-test for the accuracy metric and the Welch t-test
for the time metric and ease-of-understanding metric [Kitchenham et al. 2017]. Table 2
summarizes the two-proportion z-test. We found no statistical evidence of significant dif-
ferences between the proportions, including the proportion that corresponds to the sum of
successes for all questions (statistic = 0.058, DF = 1, p = 0.809). Table 2 also summa-
rizes the Welch t-test results for the time and ease-of-understanding metrics. We found
no statistical evidence of significant difference between the mean time and mean ease-of-
understanding of the questions (i.e., NASA-TLX workload score).
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Figure 5. Average score of NASA-TLX dimensions in the scoring phase.
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Figure 6. Percentage of the selection of NASA-TLX dimensions in the weighting
phase.

The phases of the NASA-TLX protocol (i.e., scoring and weighting – cf. Section
2.2) allowed for interesting observations beyond merely the difference between the mean
perceived workload scores. Figure 5 shows the average score of the NASA-TLX dimen-
sions in the scoring phase. Note that mental demand is the dimension with the highest
average score, followed by effort, frustration, performance, temporal demand, and, fi-
nally, physical demand. DSQL have lower workload average scores in most dimensions
(i.e., physical demand, mental demand, temporal demand, effort, and frustration); and
SQL has a lower workload average score only in the performance dimension. Figure 6
shows the percentage of the selection of NASA-TLX dimensions in the weighting phase.
Note that mental demand is the dimension with the highest percentage (22.2%), followed
by performance (20.6%), frustration (18.3%), effort (17.2%), physical demand (11.7%),
and, finally, temporal demand (10%). The analysis of both phases suggests that mental
demand is perceived as the most demanding dimension and the most relevant dimension
in the workload, while temporal demand and physical demand are perceived as the least
demanding and least relevant dimensions in the workload.
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Our results suggest that there was no observable benefit in the efficiency and
easy of understand, because the participants were able to conduct their tasks using
SQL and DSQL. One possible reason for this equivalence is because SQL (declar-
ative) and DSQL (UML based) notations are easy to understand. According to
[Eitrheim and Fernandes 2016], workload levels below 50 were perceived as acceptable,
and both SQL and DSQL had workloads close to that level (i.e., 52.3 and 49.6 respec-
tively). In this context, it is important to highlight that 58% of the students had some
knowledge of SQL and 0% of the students had knowledge of DSQL. Even with this un-
favorable context for DSQL, we can reject the null hypothesis and accept the alternative
hypothesis. That is, that DSQL has the potential to be as efficient and easy to understand
as SQL.

6. Conclusion

Given the academic and industrial relevance of SQL and the potentially complex nature
of queries written in this language, VQLs that favor its use and, consequently, decrease
the MW are important pedagogical and technological tools. In this context, we inves-
tigated the MW impact of a visual query language (i.e., DSQL) on the understanding
of SQL queries. In an experiment, we compared the accuracy, the time, and the ease-
to-understanding complex queries using both languages. The results indicate that there
is no significant difference, but that DSQL was slightly faster and easier to understand
than SQL. The NASA-TLX protocol was used to measure the MW impact. According
to [Eitrheim and Fernandes 2016], the perceived workload score for both languages are
acceptable (i.e., ≤ 50). In addition, DSQL has lower workload average scores than SQL
in almost all analyzed NASA-TLX dimensions (i.e., physical demand, mental demand,
temporal demand, effort, and frustration), with SQL being better only in the performance
dimension. We highlight that the visual notation of DSQL favors the specification of com-
plex SQL queries because it uses: (1) modularized representation that favors the focus and
reuse of specific parts of the query; (2) visual abstractions that are easily extendable from
links; and (3) better coverage of complex SQL constructs (at least 50% more expressive
than its main competitors). In summary, our experimental evaluation gave evidence that
DSQL has the potential to be as understandable and efficient as SQL without increasing
the MW and that DSQL advances the state of the art of VQLs because it mitigates the
drawbacks of related proposals. Therefore, DSQL can be an alternative for users that
prefer to work with a visual notation instead of textual syntax.

We only addressed the MW impact on understanding SQL queries in this study.
Further studies should consider the MW impact on specifying SQL queries, as well the
interactions between understanding and specifying.
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Hvorecký, J., Drlı́k, M., and Munk, M. (2010). The effect of visual query languages
on the improvement of information retrieval skills. Procedia - Social and Behavioral
Sciences, 2(2):717 – 723. Innovation and Creativity in Education.

Kawash, J. (2004). Complex quantification in structured query language (sql): A tutorial
using relational calculus. Journal of Computers in Mathematics and Science Teaching,
23(2):169–190.

Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S., Gibbs,
S., and Pohthong, A. (2017). Robust statistical methods for empirical software engi-
neering. Empirical Software Engineering, 22(2):579–630.

Longo, L. (2015). A defeasible reasoning framework for human mental workload repre-
sentation and assessment. Behaviour & Information Technology, 34(8):758–786.

StackOverflow (2018). Stack overflow developer survey results 2018.
https://insights.stackoverflow.com/survey/2018. Accessed: 2018-12-14.
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