CBIE-LACLO 2015
Anaisdo XXVI Simpédsio Brasileiro de Informéatica na Educacdo (SBIE 2015)

Visual debuggers and the deaf: paving the way to workplace

Marcos Devaner do Nascimento!, Francisco Carlos de Mattos Brito Oliveira',
Adriano Tavares de Freitas?, Lidiane Castro Silva'

!Computer Science Department — State University of Ceard (UECE)
Itaperi Campus, Fortaleza — CE — Brazil

2Computing Department — Federal Institute of Ceara (IFCE)
Maracanau Campus, Maracanati — CE — Brazil

marcos@projetolead.com.br, fran.mb.oliveira@gmail.com

{tfreitas.adriano, lidcastro}@gmail.com

Abstract. It is not enough to offer accessible learning material, accessible
learning platform and bilingual tutoring. Deaf or hearing impaired (DHI) java
graduates still show poorer perfomance in debugging tasks when compared to
their hearing counterparts. Direct manipulation and visual debuggers might
improve the odds of securing the DHI a position in the IT industry. We present
a study where DHI java graduates perform debugging tasks using a visual de-
bugger and Eclipse. Situated analysis, usability assessment and a formal task
performance evaluation show visual debuggers might benefit the DHI program-
mer.

1. Introduction

Brazil has 9.7 million people with a hearing disability (PWD) [Census 2010]. Although
there are government projects with the aim of promoting educational and social inclusion
of this public, the educational process, the professional field and world knowledge are
deficient [Santiago 2011]. Thus, it is hard for deaf people to achieve competitiveness in
the labor market.

The young deaf prefer courses in administration (56%) or in technology (31%)
[Santiago 2011]. Jobs in technology present an opportunity to improve their lives since
there are many vacancies and training time is relatively short. Moreover distance educa-
tion is a solution for the PWD in remote areas or with mobility difficulties.

The Laboratory of Distance Education for People with Disabilities (LE@D lab)
creates and offers, through our accessible learning management system (LMS), seven IT
related courses, encompassing more than 900 of training hours. Although our LMS is
equipped for the DHI and those with missing limbs, the focus of this text is on the DHI
java graduate.

Amonng our efforts to create more learing opportunities and keep the DHI moti-
vated, in our LMS, Java programming workshops are held on a environment that allows
the collaboration of a tutor, a translator and the DHI [Silva et al. 2014].

We’ve seen that it is not enough to train in order to secure a position in the work-
place. Our graduates still struggle to secure a position in IT industry. This is especially

DOI: 10.5753/chie.shie.2015.792 792

CBIE-LACLO 2015
Anaisdo XXVI Simpédsio Brasileiro de Informéatica na Educacdo (SBIE 2015)

true for the DHI. There is the fear they will not match the performance levels of the hear-
ing counterpart. Therefore the challenge extends to that of task analysis and design.

We are interested in empowering the DHI programmer in the daily tasks of a reg-
ular software engineer, such as software evolution, debugging. We have learned that DHI
graduates from our courses had inferior performance in debugging tasks when compared
to hearing counterparts who took the very same courses [do Nascimento et al. 2014].

Visual debuggers might represent hope for improving the performance of the DHI
programmer. In this paper,we compare how a visual debugger (JGrasp) impacts the activ-
ities of a DHI programmer. Ten participants were recruited to debug code in Eclipse and
JGrasp, in a between-subjects design. In that study, all subjects used industry-standard
Eclipse programming environment.

Performance was measured by: 1) Time to complete the task (TCT); 2) Num-
ber of times the subject asked for external help assistance (HA) and 3) Number of tasks
completed successfully (TCS). Based on the unpaired t-test, the results point to JGrasp
as a more productive tool. At p < 0.10, the results are not statistically significant con-
cerning to the TCT and HA values, where we get p-values of 0.17 and 0.13 respectively.
However, we observe significant difference in the TCS variable with a p-value of 0.08.
The TCT and TCS values point advantage for JGrasp, the participants were able to finish
more tasks demanding less time. A questionnaire based on the System Usability Scale
(SUS) [Brooke 1996] was applied. The average SUS score for JGrasp was 72 and 50 for
Eclipse. At p < 0.05, the unpaired t-test give us a p-value of 0.01, thus we can conclude
that JGrasp has also a better usability.

The structure of this paper is as follows: we present the theoretical background
in Section 3, which deals with direct manipulation and development environments. In
Section 4, we present related work concerning visual debuggers. Section 5 shows our
study design and subject profile; and in Section 6 we present and discuss the results.
Finally we present our proposal to build an integrated development environment (IDE)
that should keep the gains of an accessible java learning environment, as reported in
[Silva et al. 2014] and add a direct-manipulation inspired visual debugger.

2. Previous Work

2.1. JLoad - A Java Learning Object to Assist the Deaf

The JLoad [Silva et al. 2014] shown in Figure 1 was made to teach the first notions of
Java to junior students. It enables Java course designers to create their own workshops
and include them into the course’s webpages. A workshop in the JLoad is comprised of a
list of programming activities, and each activity has its own set of instructions (displayed
in portuguese and Libras). Typically, an activity in the JLoad requires some coding, com-
piling and running a Java program. The student can submit the code for grading, asking
and getting situated help from a tutor - all done within the environment of the JLoad. This
all-in-one approach prevents the learner to install and learn how to use an integrated de-
velopment environment such as Eclipse. The student can send the tutor inquiries about a
workshop’s task. The student can even highlight the portion of code she is in doubt with.
The highlighted code is anchored to the chat and vice-versa.

793

CBIE-LACLO 2015
Anaisdo XXVI Simpésio Brasileiro de Informética na Educagdo (SBIE 2015)

YO v Rl BV

curso

D)

P EXECUTAR

Figure 1. JLoad Interface.

2.2. Debugging a java code: the perfomance of hearing impaired programmers

The performance of deaf and hearing impaired (DHI) and Non-DHI programmers when
debugging Java code was assessed in [do Nascimento et al. 2014]. Ten participants (five
DHI and five Non-DHI) used the Eclipse IDE’s debugger to perform some depuration
tasks. The main idea of the experiment is to compare the performace of both groups.
Basically, we measured the time taken to complete the task, the number of requests for
assistance and successfully completed tasks.

We can see from the results (Table 1) that DHI participants underperformed the
listeners, taking into account the variables of time, the success and aid in the task. In a
qualitative analysis, certified, by the testimonies of the DHI participants that they found
it difficult to understand the messages passed by the system and interpretation of icons
arranged.

The work shows that Non-DHI and DHI had significative differences in perfor-
mance. There is evidence of correlation between the hearing condition and the ability
to complete tasks related to Java debugging in the Eclipse — x%(1, N = 70) = 17.43,
p < 0.001. There is also evidence that DHI take long to complete (when they do com-
plete) the tasks — ¢(44) = 2.54, p = 0.0153.

3. Direct Manipulation and IDE’s

According to [Hutchins et al. 1985], direct manipulation are visual interfaces in which
users operate on a representation of objects of interest. For [Rose et al. 1995], using the
visibility of objects and actions on these objects produce a significant difference in pro-
ductivity in interaction with systems. In some studies, the interfaces with these features
allow the user a better domain of the interface; better competence in performing tasks;
ease of learning both basic functions as advanced; confidence that will continue to dom-
inate the interface even if they stop to use it for a while; satisfaction in using the sys-
tem; will of teaching others; and desire to explore more advanced aspects of the system

794

CBIE-LACLO 2015
Anaisdo XXVI Simpédsio Brasileiro de Informéatica na Educacdo (SBIE 2015)

Table 1. Results of the Perfomance Experiment.

Mean Time to complete (mm:ss) # requests for help | completed the task
Non-DHI DHI Non-DHI | DHI | Non-DHI DHI

Task 01 | 00:31 03:59 0 2 5 5

Task 02 | 19:38 17:37 3 l 4 1

Task 03 | 02:43 15:59 l l 5 1

Task 04 | 03:39 - 2 0 3 0

Task 05 | 00:50 22:45 0 3 2 4

Task 06 | 03:15 - 2 0 5 0

Task 07 | 01:29 06:52 2 4 4 5

[Rose et al. 1995].

Some integrated development environments (IDEs) have applied not only the con-
cept of direct manipulation as well as the concept of visualization, doing complex tasks
like debugging a code simpler and more intuitive. [Moreno and Joy 2007] say that be-
cause of the ease of using these instruments, which are intended for the early stages of a
programmed learning process, the strategy is to make the objects and values visible and
manipulated graphically.

[Cypher and Halbert 1993] show that the concepts of direct manipulation applied
to development environments can generate greater productivity for developers. It is a con-
cept that helps in the development of logic, since materializes something abstract, allow-
ing less cognitive demand for the interpretation of mathematical logic and also allowing
the implementation of computational logic in the development of algorithms.

DHI are very visual [Gesueli and de Moura 2006] and it is reasonable to assume
that they will benefit from an IDE with these characteristics .

4. Related Work

Visual debuggers implement, by its conception, direct manipulation strategies. In this
section, we present several visual debuggers, briefly discuss how they implement such
strategies and how benefits they brought to pupils and programmers. We also choose one
of them to use in the study reported in this text and justify our choice.

4.1. Visualizing Programs with Jeliot 3

Jeliot 3 [Moreno and Joy 2007] is a tool designed for pupils to learn procedural or object-
oriented programming. Its main feature is the total or partial view of source codes and
control flows. Using this tool,students can develop and, at the same time, see the visual
representation of a running code. During this process students acquire a mental model of
computing that helps to understand better the construction of the program.

The system is easy to use. It has consistent, complete and continuous view, sup-
ports viewing a large subset of programs written in Java. The layout of this tool is divided
into four parts: methods, constants, area for expression evaluation and instance area as
we can see in Figure 2.

This program seeks to be as consistent as possible in order to reduce the cognitive

795

CBIE-LACLO 2015
Anaisdo XXVI Simpédsio Brasileiro de Informéatica na Educacdo (SBIE 2015)

3 Jeliot3.2 &=
Control Animation Help
1 import jelict.is.®; Method Area Expression Evaluation Area
: 7 sueer(31(3))
3 public class Polygon { Square
4 int sides;
5 Polygen(} () Square thisf]
6 Palygen(int s){
Integer s

8 }
El :
10 public class Rectangle extends Polygon| |
11 int width,heigth;
12 Rectanglel() {
13 super (4) ;
14 width=0;
15 heigth=0;
16 H
17 Rectangle(int w, int h){
18 supez(d) ;
19 width=u?
20 heigth=h:
21 }
22 public int getdreaf){
23 return width*heigth;
24 }
25)
26 2
27 public class Square extends Rectangle{ j: Instance and Array Area
28
23 Suare(] { el Ohiject of the class Sguare
30 ¥
B sewsceian o1
32 superis,s):
32 3 4 Constant Area
35 public class MyClass { E
36 public static woid main() { " S
37 Syuare square;

y ~ Output

® ¢ n|«

Edit Step Play Rewind

JéLlOT Animation —{l———————

speed

Figure 2. Jeliot Interface

load of students during learning. Although this tool displays a debug of visual objects, in
a critical evaluation we realized that it has a series representations and diagrams that could
confuse the user. Complex diagrams easily become confused and difficult to read. Studies
show that graphical approaches are more efficient when the task requires pattern recog-
nition, but not when the visual field is too full of objects and the task requires detailed
information [Graciano 2007].

4.2. Java Interactive Visualization Environment (Jive)

Jive [Cattaneo et al. 2004] is an interactive execution tool developed by the Department
of Science and Computer Engineering from the University of Buffalo. This system is used
for: 1) debugging Java programs with rich views of object structure and interactions be-
tween methods; 2) facilitating maintenance software; providing insight into the dynamic
behavior of programs and 3) teaching and learning Java.

It was originally designed as a stand-alone Java application. It has recently been
redesigned to the Eclipse platform and consists of a set of plug-ins and features. Its
distribution takes place using the Eclipse update manager. It provides two main views to
display the running Java programs: the object diagram view and the sequence diagram
view.

This tool uses the object diagram that demand prior knowledge of this type of dia-
gram for better understanding of what is being presented, which can generate DHI greater
cognitive effort by removing the focus of logic to the concepts linked to the diagram
(Figure 3).

4.3. JGrasp

JGrasp [Cross et al. 2004] (Figure 4) is an IDE developed to provide dynamic and illus-
trative views of Java data structures. These views are generated automatically and syn-

796

CBIE-LACLO 2015
Anaisdo XXVI Simpésio Brasileiro de Informética na Educagdo (SBIE 2015)

| Ghiec Diagram £ RIR & E-7=0) seuencaDisgom £ SN e)
T 3av Aophcation] C: Proggam Fles|avale1. 6.0, 01 s, e (Nt 5, 2007 12:45:08 AN) et i SHAIE o5, BT ZBWAN
© coiect A L [r!.e.1| E =.,==72| £ \:==1| E Toeeia] (@ T_.«.s] E r.m.6| F
B et @ Tree bain:

Dot <ty

a2

rsertyl

et

4 o . .

Figure 3. Jive Interface

chronized with the data structures in the source code. The user can step through the code
in debug mode or workbench. This integration allows a single environment for learning
data structures. The use of this tool in classroom has been an important aide for teaching
students who deal with such structures.

File Edit View Build Debug Project Settings Tools Window Help

almd Xh e« i nasy +ieEEE

Ed Listajgrasp_canvasxmi * CAUsers\marcos.devaner\Documents - JGRASP Viewer Canvas (Java) = @ p—

f
S| SlLE) (W]>) [P ¢|H (d]] raees Fle Edit View Run Debug Help
ihieads) o ; t=ll=]fix} > @ vy —————————0s0sec | &b I E WD § D ¢ E
Call Stack
[1] Lista.main (Listajava: 11) pc =17
¢
Elcarros
n
; I B
L
[Variabies | val
CI T T T -T-T-T-T-T+]
o 1 2 3 4 5 6 7 38 9 |
411:javalang Sting[0)) java lang.String] i D
—> (0bj 414 : java.util ArrayList) java.util List
B carros > (obj 414

Figure 4. JGrasp Interface

Studies conducted with students indicate that the tool can have a positive and
significant impact on student achievement [Cross II et al. 2007]. Pupils were more pro-
ductive and more capable of detect and fix logic errors using JGrasp [Leal 2014].

JGrasp runs mainly in Java Swing and its components implement parts of the Java
Accessibility API. This allows some elements to be available for assistive technologies.
The elements include: text of the source code, text of other Ul components and an alter-
native text to graphics components. It also produces source code and views at runtime
[Cross et al. 2004]. Among other visual debuggers surveyed we can identify that this tool
uses the technique of direct manipulation of objects which made it stood out from the oth-
ers. In this tool using the mouse, we can drag the variable sweep into the canvas window
and a Presentation viewer opens to scan as shown in Figure 4. After dragging the object
into the canvas window, it’s necessary to click the Step button (debug tab) until we see
variables in the Variables tab.

797

CBIE-LACLO 2015
Anaisdo XXVI Simpésio Brasileiro de Informética na Educagdo (SBIE 2015)

5. The Study

Our work investigates the effects of a visual code debugger which uses the direct manip-
ulation technique in the performance of DHI programmers. We compare the DHI perfor-
mance in tasks with similar demands using JGrasp with that when they use Eclipse.

5.1. Participants and Methodology

We recruited ten deaf participants, all male, aged between 25-36 of age, all graduates from
the basic Java course offered by our laboratory. In a between-subject design, the partici-
pants were ramdomly assigned to either one of two groups: the first group performed the
tasks using the JGrasp tool and the second group using Eclipse.

The participants received a Java algorithm that simulates some bank transactions:
withdraw (Subtract any value of the remaining balance) and deposit (Add some value to
the balance exists).

Errors were deliberately included in the methods so that participants could debug
the code, identify and correct them, as shown in Figures 5 and 6. Data were collected
based on the analysis of the screen videos and the recorded reaction of the users during
the execution of tasks.

] Detrug - Tstey're/ Progrema java - Edbpse. - o EN

o1 | & ee |4 Diberg

A]

ariparchid (Ereatpena i ko4 Tin Misgiamall
g e T

o AP g Bl vl N LBt v (BTN 1 BB

(F) Frograma jasa 17| |i] Conta jasa

Figure 5. Subject using Eclipse IDE

A script with four tasks was given to participants to assist them in the process:

. Adding a breakpoint in the Withdraw() and Deposit() methods.

. Debugging to check if the return values are consistent with the objective of the
method.

. Fixing any problems found.

4. Debugging again to verify if the calculations are correct.

N =

|9S)

Methods, analysis and evaluation were applied to both experimental conditions.
We use the situated testing technique to measure participants’ performance when debug-
ging task. For this analysis we observe the following variables: 1) time to complete the

798

CBIE-LACLO 2015

Anaisdo XXVI Simpésio Brasileiro de Informética na Educagdo (SBIE 2015)

@
fie Df e Dol Debws Browed felegi Toch Tiedom Bel

Fil: Pregrasa jv. C\lbseetymaeeen Sevaned Duskneg - JGRASP (50 [Lnal

M-

aBuE X2 as 0001 aayessdns

[clenjow msiensni

i

Jgriep sl ®

P [m Pew B Deda [eg

-1 ngmip

B ol (B B[JE [0

[P vewr - 2 IR

-5

BOS mebalosty < oy 481 ; Contaj Conta ; Baw mewet

[omsao

E gy

[Ty

| rompaa tesisgin | s i | R i | e

r I GRS

Figure 6. Subject using Jgrasp IDE

task (TCT); 2) number of times the subject asked for external help (HA) and; 3) number
of tasks completed successfully (TCS).

Table 2. Results by Task - Situated Analysis

TCS HA Average TCT
Tasks JGrasp | Eclipse | JGrasp | Eclipse | JGrasp | Eclipse
1. Adding a breakpoint in
the Withdraw() and Deposit() 4 5 1) 00:26s | 01:00s
methods.
2. Debugging to check if the
return values are consistent
with the objective of the method. 4 2 > 4 02:06s | 02:51s
3. Fixing any problems found. 5 4 3 4 01:39s | 02:08s
4. Debugging again to verify
if the calculations are correct. 4 2 4 4 01:46s | 02:45s

Besides the analysis, we applied a questionnaire based on the System Usability
Scale (SUS) so that the participants could evaluate the usability of the tools. The System
Usability Scale provides a reliable way to measure usability. It is a questionnaire based
on the heuristics of Nielsen with five response options, where the user can strongly agree
or strongly disagree withthe statements [Brooke 1996], as a Likert scale.

799

CBIE-LACLO 2015
Anaisdo XXVI Simpédsio Brasileiro de Informéatica na Educacdo (SBIE 2015)

6. Results and Discussions

Table 2 shows the results of the variables observed during the execution of debugging
tasks in JGrasp and Eclipse.

For each participant, we submitted the TCS, HA and TCT values to the one-tailed
unpaired t-test, the results obtained are shown in Table 3.

Table 3. One-tailed unpaired t-test results

t-value | p-value significance

TCS | 1.543033 | 0.080699 significant at p < 0.10
HA | 1.206045 | 0.131127 | not significant at p < 0.10
TCT | 1.011979 | 0.170587 | not significant at p < 0.10

We also evaluate the usability for users of the two mentioned tools using
a questionnaire based on the System Usability Scale. The average SUS score for
JGrasp was 72 and 50 for Eclipse. Researches indicate that a SUS score above 68
[Sauro and Lewis 2012] is considered above average.The results indicate that JGrasp tool
has better usability in the users’ evaluation.

We also applied the SUS scores to the two-tailed unpaired t-test. The t-value
obtained was 3.0291 and the p-value was 0.0163. The result is therefore significant at
p < 0.05. In other words, there is a significant difference in the usability of the two tools.

7. Conclusion

In this paper, we discuss various concepts and research to improve the performance of
DHI programmers in tasks related to debugging. We found that systems with a visual
approach combined with direct manipulation of objects produce higher productivity and
usability for the DHI. Debugging is just part of the many activities a software developer
is involved. The findings reported here just encourage further investigation. There is
lot to be done. One thing is sure: We have to intervine in the workspace to improve
productivity of the DHI programmer. How far should we use vision is a tricky question.
Vision is over special resource for the DHI and we should avoid overloading it. We will
carefully design a visual debugger for the DHI, having that in mind. We should also
integrate this visual debugger with the JLoad [Silva et al. 2014]. In this way we will have
an interactive development environment and Java code debugging, which followed the
standards of accessibility and will allow students to create their codes in an interactive web
environment, eliminating the installation and configuration of an IDE on your machine,
bringing mobility for students.

References

Brooke, J. (1996). Sus - a quick and dirty usability scale. Usability evaluation in industry,
189(194):4-7.

Cattaneo, G., Faruolo, P., Petrillo, U. F.,, and Italiano, G. F. (2004). Jive: Java inter-
active software visualization environment. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on, pages 41-43. IEEE.

800

CBIE-LACLO 2015
Anaisdo XXVI Simpédsio Brasileiro de Informéatica na Educacdo (SBIE 2015)

Census (2010). http://www.censo2010.ibge.gov.br/. Brazilian Institute of Geography and
Statistics (IBGE).

Cross, J. H., Hendrix, D., and Umphress, D. A. (2004). Jgrasp: an integrated development
environment with visualizations for teaching java in csl1, cs2, and beyond. In Frontiers
in Education, 2004. FIE 2004. 34th Annual, pages 1466—1467. IEEE.

Cross 11, J. H., Hendrix, T. D., Jain, J., and Barowski, L. A. (2007). Dynamic object
viewers for data structures. ACM SIGCSE Bulletin, 39(1):4-8.

Cypher, A. and Halbert, D. C. (1993). Watch what I do: programming by demonstration.
MIT press.

do Nascimento, M. D., Oliveira, F. C. d. M. B., and de Freitas, A. T. (2014). How do
deaf or hearing impaired programmers perform in debugging java code? In Anais do
Simposio Brasileiro de Informdtica na Educagdo, volume 25, pages 593—601.

Gesueli, Z. M. and de Moura, L. (2006). Literacy and deafness: the words display -
letramento e surdez: a visualizacdo das palavras. ETD: Educacdo Temdtica Digital,
7(2):110-122.

Graciano, A. B. V. (2007). Object tracking based on pattern structural recognition. - Ras-
treamento de objetos baseado em reconhecimento estrutural de padroes. PhD thesis,
Universidade de Sao Paulo.

Hutchins, E. L., Hollan, J. D., and Norman, D. A. (1985). Direct manipulation interfaces.
Human—Computer Interaction, 1(4):311-338.

Leal, A. V. d. A. (2014). Teaching programming in high school: An approach using stan-
dards and games with concrete materials - ensino de programacao no ensino médio
integrado: Uma abordagem utilizando padrdes e jogos com materiais concretos. Mas-
ter’s thesis. Available online at http://repositorio.bc.ufg.br/tede/handle/tede/3613.

Moreno, A. and Joy, M. S. (2007). Jeliot 3 in a demanding educational setting. Electronic
Notes in Theoretical Computer Science, 178:51-59.

Rose, A., Plaisant, C., and Shneiderman, B. (1995). Using ethnographic methods in
user interface re-engineering. In Proc. DIS ’95: Symposium on Designing Interactive
Systems, pages 115-122.

Santiago, V. d. A. A. (2011). The participation of deaf people in the labor mar-
ket - a participagdo de surdos no mercado de trabalho. Available online at
http://www.porsinal.pt/index.php?ps=artigos&idt=artc&cat=12&idart=299.

Sauro, J. and Lewis, J. R. (2012). Quantifying the user experience: Practical statistics
for user research. Elsevier.

Silva, L. C., Oliveira, F. C. d., Oliveira, A. C. d., and Freitas, A. T. d. (2014). Introducing
the jload: A java learning object to assist the deaf. In Advanced Learning Technologies
(ICALT), 2014 IEEE 14th International Conference on, pages 579-583. IEEE.

801

