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Abstract: Research on cognitive theories about programming learning suggests that 
experienced programmers solve problems by looking for previous solutions that are related with 
the new problem and that can be adapted to the current situation. On the other hand, an 
apprentice who does not have any previous programming experiences in mind can only appeal 
to the sentences of the language that he had learned so far. Inspired by these ideas, 
programming teachers have developed a pattern based programming instruction. In this model, 
learning can be seen as a process of pattern recognition, which compares experiences from the 
past with the current situation. In this work, we present a programming environment in which a 
student can program using a set of pedagogical patterns, i.e., elementary programming patterns 
recommended by a group of teachers. In this environment, while the student is editing a 
program, he can select and insert patterns in order to satisfy subgoals of a given problem. After 
having a compiled program, the student can submit it to a diagnosis system for detection of (i) 
possible errors and/or (ii) student's misconceptions on the use of patterns. Finally, in order to 
propose further extensions to the pattern based programming education, we analyze the 
programming reasoning in terms of a BDI architecture for rational agents in AI. 

 
1 Introduction 
Writing a program for a novice involves many difficulties and the attempts to deal with multiple 
impasses all at once, can make this task even worse. Research on programming psychology points 
out two challenges that a novice programmer has to handle: 

1. learning a new programming language: the student has to learn and memorize the syntax 
and semantics of a new programming language; 

2. learning how to solve problems to be executed by a computer: the student has to learn how 
to translate a solution, that she probably already knows how to solve by hand, to a program for 
the computer to execute. A good example could be how to construct a program to solve 
quadratic equations. 

Although a programming language has a lot of details, the first challenge is not the most difficult 
part. Evidences show that learning a second language is, in general, easier. A hypothesis is that the 
student has already acquired abilities to solve problems using the computer, which is the common 
skill to learning different programming languages. 

Related to the second challenge, research on cognitive theories about programming learning has 
shown evidences that experienced programmers store and retrieve old experiences on problem 
solving that can be applied to a new problem and can be adapted to solve it. On the other hand, a 
novice programmer does not have any real experiences but the primitive structures from the 
programming language he is currently learning [JS84]. Inspired on these ideas, one strategy to 
teach how to program is to present small programming pieces, instead leaving the student to 
program from scratch. That is the proposal of the Pedagogical Patterns Community: a group of 
experienced programming educators engaged in recommending programming pieces for novices 
also called pedagogical programming patterns or elementary programming patterns. Supposing 
that students who learned elementary programming patterns will in fact construct programs with 
them, i.e., with known pieces of code, an Intelligent Tutoring System (ITS) could take a number of 
advantages from this teaching strategy, such as: 
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• to allow the tutor to establish a dialogue with the student in terms of problem solving strategies, 
through the pedagogical pattern documentation, as it was done in PROUST [John90]; 

• to enable the tutor module for diagnosing the student’s program, to reason about the 
pedagogical patterns in a hierarchical fashion, i.e., to detect program faults in different levels of 
abstraction. 

In this paper, we present a new Eclipse IDE for programming learning based on Pedagogical 
Patterns that has been developed as part of Eclipse IBM/IME project (2004 grant). We also show 
an extension of the IDE with a diagnosis system, using a Model Based Diagnosis method, to detect 
errors in the student program in terms of: (1) the wrong use of the language sentences and; (2) the 
wrong selection and decomposition of Pedagogical Patterns. Finally, we discuss how the above 
reasoning model, i.e., the retrieval of programming patterns to solve a new problem, can be related 
with a BDI model for practical reasoning of rational agents in Artificial Intelligence and be useful 
to new investigations on programming learning strategies. 
 
2 Pedagogical Programming Patterns in the Classroom 
Pedagogical programming patterns, also called elementary programming patterns, are 
recommended solutions for common problems described in a way to facilitate their reuse. Patterns 
are simple, synthetic and recommended by researchers on programming teaching for novices 
[PC03]. A pattern relates a problem to a solution and provides information about the context that it 
can be applied. Its potential use in programming teaching has been explored by the pedagogical 
patterns community. Programming patterns are available in the Web for C, C++ and Java 
languages [Wal01], including: selection patterns [Ber99], repetition patterns [AW98] and others 
[Bri02]. Porter and Calder [PC03] suggest a process to employ programming patterns in the 
classroom and Proulx [Pro00] created a first Computer Science course based on these patterns. 
 

Table 1: Programming Patterns Examples. 

 
Programming patterns can help novice programmers in two ways: 

1. to learn general strategies (in a higher abstraction level); 

2. to retrieve the syntax and the use of a programming language, once its documentations include 
a program, which is an example for that pattern application. 

pattern name use / application syntax 

Loop with Sentinel You want to repeat a set of actions 
while a condition is true. In general, 
the set of actions is related to the 
processing of a sequence of elements 
or numbers. The amount of elements 
is unknown but the end of the 
sequence is indicated by a sentinel 
value. The elements can be read or 
generated. 

‘INITIALIZATIONS’ 
‘SENTINEL VARIABLE INITIALIZATION’ 
while (‘SENTINEL VARIABLE CONDITION’) 
{ 
    ‘READ/GENERATE A SEQUENCE ELEMENT’ 
    ‘PROCESS ELEMENT’ 
    ‘UPDATE SENTINEL VARIABLE’ 
} 

Counting Loop You want to repeat a set of actions a 
determined number of times. In 
general, the set of actions is related to 
the processing of a sequence of 
elements or numbers. The number of 
elements must be known. The 
elements can be read or generated. 

‘INITIALIZATIONS’ 
for (‘COUNTER INITIALIZATION’; ’COUNTER CONDITION’; ’UPDATE COUNTER’) 
{ 
    ‘READ/GENERATE A SEQUENCE ELEMENT’ 
    ‘PROCESS ELEMENT’ 
} 
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On the other hand, programming patterns can help a human tutor to: (a) recognize the student’s 
intentions; (b) establish a better communication with the student, since they provide a common 
vocabulary about general strategies for programming problem solving. 
 

 
Figure 1: Loop with Sentinel Pattern. 
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Some pattern examples are shown in Table 1, where we give a small part of the documentation of 
two loop patterns: Sentinel Loop and Counting Loop. Notice that they correspond to distinct 
strategies commonly used to solve sequence treatment problems, as it is stated in the 
use/application column of the table. A student that uses one strategy when the other one is more 
naturally applied has difficulties to accomplish the program solution. In the syntax of the patterns 
(third column) the words between quotation marks are called metadata. Metadata are used to 
indicate to the student a part of the code that has to be instantiated with a new pattern or C code, 
typed by herself. Figure 1 shows the Loop with Sentinel example in more details. 
 
3 ProPAT 
ProPAT is a programming learning environment using pedagogical patterns, built as an Eclipse 
plug-in and is part of an IME-IBM project. ProPAT provides an IDE for a first computer science 
course, i.e., an IDE for programming to novices. In this environment, the student can choose a 
programming exercise and to construct a solution by selecting and adding Programming Patterns 
into the Eclipse editor. ProPAT also allows a teacher to add new pedagogical programming 
patterns, new exercises and bench tests. 

This project was first developed for C language. Some ProPAT characteristics were inherited from 
the original Eclipse CDT plug-in while others were specially developed (Figure 2), such as: 
 

 
Figure 2: ProPAT student perspective. 

 
• Student Perspective: where the student can choose the exercises and develop solutions 

through patterns selection or even write their own code. 
• Teacher Perspective: used by the teacher to specify new exercises and patterns that will be 

available to students. 
• Editor View: a program editor in which the student can automatically include patterns by 

replacing metadata or typing a new line of code. The inclusion of patterns in the place of a 
metadata is constrained by a general taxonomy of metadata and patterns. Therefore the 
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implementation of this view involves the detection of a number of forbidden pattern selections 
(e.g.: ‘initialization’ can not be replaced by a ‘print’ pattern). 

• Navigator View: allows the navigation between projects and their respective files. 
• Pattern View: shows a pattern list from where the student can select a pattern, either to 

visualize its documentation or to insert it in the editor. 
• Pattern Info View: shows the selected pattern documentation. 
• Problem View: allows browsing in the exercises list, grouped by categories. 
• Problem Description View: shows the selected exercise description. 
• Message Console: shows the compilation messages. 

Our proposal is to add a diagnosis module to ProPAT in order to detect errors in the student 
program (after it has been compiled with no syntax errors). In the next section we show how a well 
known model based diagnosis technique for physics systems [Ben93] can be used to programs 
[CMW00]. 
 
4 Diagnosis 
The basic idea of model-based diagnosing programs is to derive a component model directly from 
the program and from the programming language semantics. This model must identify 
components, connections, the program structure and the system description. Similar to diagnosis 
of physical devices, the system description, in this case, is the student program behavior which 
reflects its errors. The observations are the incorrect outputs in the different points of the original 
program code. The predictions are not made by the system, but by the student and therefore this is 
the situation where the student communicates her programming goals to the tutor. 
 
4.1 A review of Reiter’s original algorithm 
Reiter [Reiter87] proposed a diagnosis algorithm (for faulty systems in general) that computes all 
minimal hitting sets for a family of components sets F improved later by Greiner [Greiner89]. The 
algorithm generates an acyclic graph in which nodes are labelled by sets and arcs are labelled by 
elements of the set. The idea is that for each node labelled by a set S, the arcs leaving from it are 
labelled by the elements of S. 

Let H(n) denote the set formed by the labels of the path going from the root to node n. Node n has 
to be labelled by a set S such that S∩H(n)=∅. If no such set can be found, the node is labelled by 
@. The idea is that every path finishing at a node labelled by @ is a hitting set, since it intersects 
all possible labels for the nodes. The algorithm tries to generate as few new node labels as 
possible. This is due to the fact that for the diagnosis, the collection of sets F, which can be used as 
a node labels, will be given only implicitly. Calculating one element of F involves a call to a 
theorem prover to find a conflict set. The corrected Reiter’s algorithm that expands the graph 
breadth first is: 
 

1. Choose one set of F to label the root node (level 0) 
2. For each node n at level i do: 

a. If n is labelled by a set S, then for every s ∈ S create an arc departing from n with label s. 
b. Set H(n) to be the set of arc labels on the path from the root to node n. 
c. If there is some node n’ such that H(n’)=H(n)∪{s}, then let the s-arc of n point to n’. 
d. Else, if there is a node n’ labelled by @ such that H(n') ⊂(H(n) ∪ {s}) then close the s-arc. 
e. Else , if  there is  some  node  n’  labelled  by  S’  such  that S'∩ (H(n) ∪ {s}) = ∅ , then let 

the s-arc of n point to a new node labelled by S’. 
f. Otherwise, let the s-arc point to a new node m and let m be labelled by the first element S’ of 

F such that S’ ∩ H (m)= ∅ If no such set exists, then label m by @ 
g. If there is some node n’ labelled by a set S* such that S’ ⊂ S* then relabel node n’ by S’ and 

remove all arcs departing from n’ which were labelled by elements of S*\S’. 
3. Repeat step 2 for level i+1 

Workshop em Informática na Educação  (sbie) 2004 212XV Simpósio Brasileiro de Informática na Educação - SBIE - UFAM - 2004



Theorem [Reiter87]: Let F be a collection of sets and let D be a graph returned by the algorithm 
above. The set {H(n) / n is a node of D labelled by @} is the collection of minimal hitting sets for 
F. 
 
4.2 Hierarchical Diagnosis 
In [CMW00] is proposed a very interesting application of Reiter's algorithm to find possible fault 
components for program debugging. The set of components and its connections correspond to 
parts of a possibly faulty program and the minimal hitting sets are used to guide a sequence of 
questions (probes) to the programmer beliefs about his program behavior. Since we propose to use 
this approach to debugging a student program it is necessary to have a higher level of interaction 
than in [CMW00]. This is done by modelling Programming Patterns as new components. Thus, the 
diagnosis module would be able to reason about patterns in a hierarchical fashion, i.e., to detect 
program faults in different abstraction levels of the program. Besides, the tutor can establish a 
dialogue with the student in terms of problem solving strategies as it was done in PROUST 
[John90], but now, based on pedagogical patterns documentation. 

Figure 3 shows an example of a component model for the following problem (Average Problem): 
Read numbers, taking their sum until the number 99999 is seen. Report the average. Do not 
include the value 99999 in the average. 

Note in Figure 3 that, by identifying patterns in the program model, we can construct a new model 
with a reduced number of components. In this approach, besides getting a model that can improve 
efficiency on the diagnosis process, the student will be asked to make predictions in terms of high-
level strategies and goals. 

 
Figure 3: Two structural models of a program solution for the Average Problem. By identifying a pattern 

component in the value based model, we can make diagnosis using a smaller program description that allows 
for a higher level interaction with the student and a more efficient fault detection. 
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We have implemented a diagnosis method, based on Reiter’s algorithm [Reiter87], to make the 
diagnosis of C programs without considering the patterns, like it was done by Mateis and Wotawa 
[CMW00] for diagnosing Java programs. However, we found that the interaction with the student, 
done basically by asking the expected value for a variable in a specific point of the program, is not 
enough to make the student to understand her mistakes on selecting a solution strategy. We are 
currently implementing our proposed new diagnosis approach where, by identifying the applied 
student’s strategies (i.e., her selected patterns in the ProPAT IDE), we will be able to implement a 
better tutor interaction, in a higher abstraction level that will enable the student to identify her 
strategies mistakes. 
 
5 Identifying the Student Intentions or Pattern Selection 
The identification of the programming patterns used by the student can be done in the ProPAT 
IDE, in three different programming modes: 

MODE 1. High Control: in this mode the student can program only by inserting 
programming patterns. Therefore, for each programming problem, from the exercises list of 
ProPAT, the teacher has to specify all the subgoals the student must program for and the student 
has to necessarily select a pattern to solve each one of them; 

MODE 2. Medium Control: in this mode the student can, besides selecting and inserting 
patterns from the library, freely type his own code. She also needs to indicate which set of lines 
(probably patterns) achieves each subgoal of the problem; 

MODE 3. Free Programming: in which the student can type his own code or choose patterns 
without specifying them. In this mode the tutor system should be able to automatically recognize 
the patterns she has used in the program. 

The ProPAT tutor is currently implemented to identify the student strategy in MODE 1, only. 
However, this is a simplification that will allow us to focus first on the diagnosis process using 
patterns and the improvement of the tutor high level interaction. 
 
6 A Practical Reasoning Model 
The pattern recognition process proposed by the Pedagogical Patterns community corresponds to 
the ideas of rational behavior of intelligent agents proposed by the AI community. An example of 
such model is the BDI architecture proposed in [MEBP88]. In this architecture, a rational agent 
must plan for his goals, i.e., to reason in terms of means-end analysis and weigh the competing 
alternatives. The way an agent plans is based on former experiences that can be related and 
adapted to current problems. 

In the BDI model, Beliefs stand for the agent’s knowledge about world, including world properties 
and his former experiences on problem solving (plans or strategies). Desires are the problem goals 
the agent wants to solve and Intentions are the plans (or strategies) the agent has actually adopted 
to solve her goals. 

The data structures specified in the BDI architecture proposed in [MEBP88] are: a plan library and 
explicit representations of beliefs, desires, and intentions. Additionally, there are five processes: 
(1) means-end reasoner, for determining which plans might be used to achieve the agent’s 
intentions; (2) belief reasoner, for reasoning about the agent’s beliefs; (3) opportunity analyzer, 
which monitors the world in order to determine further options for the agent; (4) filtering process, 
responsible for determining the subset of the agent’s plans that have the property of being 
consistent with her current intentions and (5) deliberation process to produce intentions that will 
be finally incorporated into the agent’s final plan. 

This architecture states that the intentions structured into plans constrain the amount of further 
practical reasoning the agent must do. The plans, as input to the means-end reasoner, they provide 
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a clear, concrete purpose reasoning and, as input to the filtering process, they narrow the scope of 
deliberation to a limited set of options. 
 
6.1 The Programming Agent 
Based on the BDI architecture one can model an experienced human programmer as a practical 
reasoning agent. We claim that by having a theory of human rationality for programming, we can 
have a better understanding of the reasoning process that a programming apprentice has to learn. 

Since the original BDI model considers agents that act and perceive the world during its reasoning, 
to make a fair comparison with a programmer, we will think about programming using an 
interpreter, such as a LISP interpreter. In this situation the actions are the code lines that have been 
given for evaluation and the perception is what is returned by the interpreter. The solution plan 
would be the whole code entered by the programmer. Programming former experiences can be 
seen as programming patterns. While an experienced programmer has already a full library of 
reusable patterns (in his mind), a programming apprentice does not have any. However, adopting 
the Pedagogical Pattern teaching strategy, a programming apprentice can have access to an 
elementary programming patterns library (explicitly documented) that is given by the teacher. 

Figure 4 shows the architecture data flow proposed in [MEBP88] that we have modified for a 
programmer agent as we will explain next. 
 

 
Figure 4: An architecture for a novice student agent 
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• Beliefs. Represent the student knowledge about the world described in terms of (1) the 
programming patterns she has learned so far, the situation they can be applied and programming 
goals they can achieve; (2) the value of variables in different points of the program and (3) the 
program subgoals that she beliefs that are already satisfied. 

• Desires. The desires will correspond to programming subgoals of a problem description, 
identified by an experienced programmer (or formally specified by the teacher for the 
programming student). 

• Intentions Structured into Plans. They are the programming patterns chosen to solve 
particular problem subgoals, i.e., programming patterns that the agent has actually selected. 

• Plan Library. It is a subset of Beliefs and correspond to the programming patterns that the 
student believes they would be useful to solve the current problem. 

• Means-end Reasoner. It is the reasoning process responsible for the instantiation and 
decomposition of the patterns, according to the agent beliefs. 

• Opportunity Analyzer. It is the process that proposes options in response to (i) perceived 
changes in the environment and (ii) its desires (subgoals that are no longer satisfied or subgoals 
satisfied by previous actions). A student should be able to perceive opportunities on the use of a 
pattern by matching the situation she is currently in, with the pattern application documentation. 

• Compatibility Filter. Once options have been considered, either by the means-end reasoner or 
by the opportunity analyzer, they are subject to the filtering process. Options that are inconsistent 
with the agent’s existing plans and beliefs will be filtered out. 

• Deliberation Process. Produces intentions that are incorporated into the agent’s plans, for 
example, the student has chosen to initialize the sentinel variable with an attribution to fulfill the 
current intention of using sentinel loop. 

Based on the assumption that a programming apprentice will have to learn how to reason as a 
rational agent, i.e., a BDI agent, there are many ways in which the ProPAT programming 
environment can give some support to the student learning process, such as: 

• leaving an explicit library of patterns so the student can have access to the pattern 
documentation while programming, to identify opportunities to select and add patterns into her 
program; 

• showing the programming subgoals, specified by a teacher, for a list of problems using a 
language close to the patterns descriptions of goals and application situations; 

• allowing the student, through the Model Based Diagnosis (in a non interpreter programming 
mode), to express his beliefs about his program that, when compared with the execution of his 
program by the diagnoser, it will force her to reason about her beliefs (which corresponds to the 
belief revision reasoner). The idea of performing diagnosis on different level of abstraction (using 
patterns as components), can give to the student the opportunity to reason about a high level 
description of his plan/program. 

Next, we want to explore, in the ProPAT, new ideas about filtering processes. These processes, in 
pattern based programming education, would correspond to the student capability to select the 
correct pattern for his programming goals, from a list of applicable patterns options and also 
considering the opportunities to satisfy new subgoals. 
 
7 Conclusions 
In this work, we have presented a programming environment, called ProPAT that allows the 
student to program using pedagogical patterns, i.e., a set of programming patterns recommended 
by computer educators. By using a model based diagnosis approach for detecting the student 
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errors, we add to ProPAT the state of the art on program diagnosis and proposed a way to extend it 
by identifying the patterns used by the student during programming and creating a program model 
that includes patterns as components. This idea will allow for a better communication between the 
tutor system and the student. 

The ProPAT programming interface is already implemented, as an Eclipse plug-in, in the 
programming mode high control. For the high control mode we have generated program models 
including some simple patterns. One of the challenges of novices’ program diagnosis is the 
interaction with the student which can be harder than the interaction with an experienced 
programmer. We believe that, by using programming patterns we will be able to improve the 
communication. We are currently working on an introductory computer science course that will 
use the ProPAT IDE in classroom for testing our new pattern-based diagnosis method. 

We also have shown how the BDI model, proposed by the AI studies on practical reasoning, can 
fit in the pattern based model of programming education, and pointed out some ways we can use 
this model to investigate new improvements in programming education and in the ProPAT 
programming environment. 
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