IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

How do deaf or hearing impaired programmers perform in
debugging java code?

Marcos Devaner do Nascimento!, Francisco Carlos de Mattos Brito Oliveira',
Adriano Tavares de Freitas®

!Computer Science Department — State University of Ceard (UECE)
Itaperi Campus, Fortaleza - CE - Brazil

2Computing Department — Federal Institute of Ceard (IFCE)
Maracanad Campus, Maracanau - CE - Brazil

marcos@projetolead.com.br, {fran.mb.oliveira, tfreitas.adriano}@gmail.com

Abstract. People who are deaf or hearing impaired (DHI) often struggle with
low-paying jobs. Access to education can change their perspectives. Many
jobs in the information technology industry are left unfilled due to the lack of
skillful candidates. Our lab offers distance learning Java programming courses
to the DHI. We wondered how good our java DHI graduates are in finding and
fixing program errors and changing program logic. We asked 5 DHI and 5 non-
DHI programmers with the same amount of experience and training to perform
debugging related tasks. We performed task and situated analysis and found that
DHI programmer performance inferior to those without the disability. We argue
that a debugging tool based on a mode more kin to the DHI should mitigate the
disparity.

Resumo. Pessoas surdas ou com deficiéncia auditiva (SDA), muitas vezes pos-
suem empregos de baixa remuneracdo. O acesso a educacdo pode mudar suas
perspectivas. Muitos postos de trabalho na drea de tecnologia da informacdo
sdo deixados ociosos por falta de candidatos hdbeis. Nosso laboratorio ofe-
rece cursos a distancia de programagdo Java para pessoas SDA. Nos pergun-
tamos o qudo bons nossos alunos SDA sdo em encontrar e corrigir erros em
um programa. Cinco programadores SDA e cinco programadores ouvintes
com a mesma experiéncia e treinamento executaram atividades de depuragdo
de codigo. Realizamos uma andlise situada e descobrimos que o desempenho
dos programadores SDA era menor em relacdo aqueles sem deficiéncia. Argu-
mentamos que uma ferramenta de depuracdo voltada para o piiblico SDA deve
atenuar essa disparidade.

1. Introduction

According to the Brazilian Federal Census (2010), Brazil has 9.7 million people who
are deaf or hearing impaired (DHI). DHI often struggle with low paying jobs. Brazilian
Federal law 10.436/2002 requires that companies with more than 100 employees must
have from 2 to 5% of their working force comprised of people with disabilities. Despite
governmental incentives to promote educational and social inclusion, learning materials
and teaching processes are still inneficient [Santiago 2011]. Thus, it is hard for the DHI to
achieve competitiveness in the labor market. Jobs in technology present an opportunity to

593

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

improve the life of the DHI. There are many vacancies and the training time is relatively
short. Moreover, distance education can rearch the DHI in remote areas or with mobility
difficulties.

There are several learning environments for distance education of the deaf, how-
ever, just a few are meant for training DHI programmers. Our lab offers distance learn-
ing Java programming courses. The Java track is comprised of three modules: 1) Ba-
sic; 2) Intermediary and 3) Advanced and it takes twelve months to be completed. We
have noticed that the DHI struggle to learn programming concepts and to get comfort-
able with integrated development environments (IDE), like Eclipse. For that matter, we
have already proposed a highly cooperative and interactive IDE, strongly coupled with
our learning platform. Such IDE, JLoad, embeds programming workshops into the learn-
ing platform itself and allows tutors to support pupils in every step, granting them access
to the marked-up code, in a situated way. We describe JLoad in [Silva et al. 2014]. Al-
though JLoad facilitates the learning of Java programming, it does not have support for
debugging activities.

In the present work, we assess DHI performance in debug-related tasks and com-
pare it with non-DHI programmers with the same training — all graduates from our Java
courses. Debugging helps programmers to gain insight of program behavior, and is crucial
for software maintenance and evolution. Labor market expects a computer programmer to
be able to understand someone else’s code and change its behavior. However, debugging
sessions might be challenging. For [Le Goues et al. 2011], current debuggers are difficult
to use, requiring skill and patience to understand the errors and failures presented. In
this first study, the tasks are simple and so are the programs — none of them have even
an object. All programs are procedural and well-structured. Debugging object-oriented
programs are even harder [Lessa et al. 2010] and thus were left out of this initial study.
We hypothesize that there is a difference in performance for the DHI and the non-DHI
groups when related to debugging activities. We performed a study with five (5) DHI and
five (5) non-DHI, aged between 23 and 38 involved in debugging activities to verify our
hypotheses.

This paper is structured as follows. In the Section 2, we briefly discuss the chal-
lenges of teaching Java to the DHI who use a highly spacial sign language and are called to
express themselves in a linear English-derived programming language. In the sequence,
we elaborate on the importance of debugging activities for learning and on making the
DHI programmers effective members of real world IT teams. After that, in Section
3, we detail our study including: participants’ profile, tasks performed and quantita-
tive/qualitative evaluation. Our analysis, showed in Section 4, indicates that there is a
strong evidence of correlation between the hearing condition and the ability of finishing
Java debugging tasks successfully. The time spent in performing the activities also differs
in each group. In Section 5 we argue that using visual-spatial representations is a good
way to improve the performance of the deaf in different activities and we show some
works which use this visual appeal to make the programming activities easier. Finally in
Section 6, as a response to our findings, we propose the assessment of existing Eclipse
Visual Debuggers plugins in a set of tasks similar to the ones described here. We also
discuss the risks involving the development and validation of highly visual tool can pose
on performance of the DHI especially overloading their super-necessary vision and their

594

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

short term memory. Such risks can undo any work aimed to improve DHI performance
through the deployment of a Visual Debugger.

2. Teaching the Deaf

DHI students are regarded as having lower academic performance in when compared to
their hearing counterparts in all educational settings, as we can see in [Gregory 1998],
[Traxler 2000] and [Nogueira and Zanquetta 2009]. [Blatto-Vallee et al. 2007] even pose
that the DHI undergraduate are at the same mathematical level as the lowest scoring
hearing mid schoolers. However hearing loss might not be at the root of the prob-
lem. [Nunes and Moreno 1998] argue that the “poor mathematical performance but rather
more of a risk factor related to the timing, type of instruction, and learning opportuni-
ties provided to deaf student.” To corroborate that line of thought, [Zarfaty et al. 2004]
showed that 3 and 4-year-old DHI children have spatial and temporal skills compara-
ble to their hearing colleagues at the same age and even better spatial numerical skills.
[Barbosa 2013] argues that in cognitive functions less dependent on linguistic stimuli
DHI and non-DHI children seem to have similar performance.

[Boroditsky 2011] argues that bilinguals reason differently when on the same mat-
ter when required to do so in the two languages. That language shift also impacts memory.
Finally, the author posits that “language shapes even the most fundamental dimensions of
human experience: space, time, causality and relationships to others.”

It is relatively straightforward to understand why teaching materials designed for
non-DHI are not quite appropriate for the DHI. For [Perlin 2004], the “hearing culture”
is essentially comprised of auditory signs and that DHI does not use hearing signs as
they cannot fully understand them as they comprehend them in the realm of visual signs.
It is not only the lack of appropriate learning material. The Brazilian sign language (Li-
bras) is relatively young (13 years) and has a poor lexicon, when compared to Portuguese.
Concepts used in Computer Science in general and in object-oriented programming lan-
guages like Java (eg. polymorphism, instantiation) simply do not exist in Libras. Our
lab is working on another research aimed to help the DHI community to enrich Libras
lexicon.

Any programming course must include debugging lessons in a hands-on approach
in its syllabus as employers expect their DHI programmers to be fully integrated with the
rest of the workforce, mostly non-DHI. We wondered how our DHI students would per-
form in debugging related tasks when compared to non-DHI using an industry-standard
programming IDE like Eclipse. To our knowledge, no such study has been done. In the
following section we describe our experiment.

3. Study

Ten students who had just completed our 150 hour basic java course participated in our
study. They were divided into 2 groups each with five participants: the DHI group and the
non-DHI group. Participants’ age ranged from 23 through 38 and were all male. Four DHI
had college degrees and one undergrad. Among the non-DHI, there were one graduate,
two undergrads and two high-school degree holders.

In Table 1, we summarise relevant demographic information about the partici-
pants. As one can note, DHI participants are slightly better educated but experience with

595

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

Table 1. Relevant Skills

Profile Skill Results
4 participants - Good
1 participant - Moderate
4 participants - Moderate
1 participant - Little
DHI Development experience with Eclipse | 5 participants - More than a year
LIBRAS Proficiency 4 part?c%pants - Excellent
1 participant - Good
4 participants - Little
1 participant - Good
Development experience with Eclipse | 5 participants - More than a year

Portuguese Comprehension

English Comprehension

English Comprehension
Non-DHI

Eclipse is similar across groups.

3.1. The Procedure

The study consists in finding and correcting one error in two Java classes as illustrated
in Figure 1. All the participants (non-DHI and DHI) used the Eclipse Debugger to per-
form some study tasks. The main idea of the experiment is to compare the way the two
groups performed each task. Basically we measure the time spent to complete the task,
the number of requests for assistance and if they successfully complete the task.

The seven tasks given to the participants in the experiment are:

Task 01 - Modify to the debug perspective;
Task 02 - Correct the errors in the code;

Task 03 - Add breakpoint on a line of the code;
Task 04 - Check the values of the variables;
Task 05 - Use the stepover functionality;

Task 06 - Loop through all the lines of the code;
Task 07 - Modify to the java perspective;

They are typical activities in a process of debugging. There was no time constraint
for the participants to finish. None of the tasks was mandatory. A video providing guid-
ance was available in LIBRAS and Portuguese. A LIBRAS interpreter and an expert were
available to answer technical questions and give support.

The experiment was recorded and later analyzed to check variables of measure-
ment.
4. Results

Table 2 displays the data collected. Despite having attended to the same Java course,
Non-DHI and DHI had significative differences in performance.

There is evidence of correlation between the hearing condition and the ability
to complete tasks related to Java debugging in the Eclipse IDE — x?(1, N = 70) =
17.43, p < 0.001. There is also evidence that DHI take long to complete (when they do

596

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

public class Account {
public double balance = 400;
public double draw (double value){

if (this.balance < value){
this.balance = Double.parseDouble(value);
System.out.println("There aren't sufficient funds.");
telse{
this.balance = Double.parseDouble(value);
this.balance = value;
System.out.println("Successfully performed.");
}

return value;

f=JY= I B N R R U NP

B
—
—

(=
=y
8]

g
U

—
J g

—_
WO oo~

}

public class AccountTest {

public static void main (String[] args){
Account ¢ = new Account();
c.draw(100);

}

O W00~ oYU W PO =

—_

Figure 1. Java classes with errors

complete) the tasks — ¢(44) = 2.54, p = 0.0153. We ran the Student’s t-test at 90%
confidence interval to mitigate the risk of committing a type II error, due to low number
of participants.

Table 2. Collected Data

Mean Time to complete (mm:ss) | # requests for help | completed the task

Non-DHI | DHI Non-DHI | DHI | Non-DHI | DHI
Task 01 | 00:31 03:59 0 2 5 5
Task 02 | 19:38 17:37 3 1 4 1
Task 03 | 02:43 15:59 1 1 5 1
Task 04 | 03:39 - 2 0 3 0
Task 05 | 00:50 22:45 0 3 2 4
Task 06 | 03:15 - 2 0 5 0
Task 07 | 01:29 06:52 2 4 4 5

Interestingly, we could not find any relevant difference in the number of requests
for help, despite the fact that there was a translator and an expert available. In our situated
analysis, we found that in many occasions the DHI get completely lost, they seem not to
understand what is asked of them, despite the fact that the instructions are available in
LIBRAS. It seems that they do not understand the context. They particular get lost when
they have to read the messages conveyed by the IDE. As for the Non-DHI, they easily find
the appropriate widgets on IDE and have a better understanding of the system messages.
They also explore the IDE with more resourcefulness.

5. Towards a Visual Accessible Java Debugger

[Blatto-Vallee et al. 2007] point that the use of visual-spatial schematic representations is
a strong positive predictor of mathematical problem-solving performance for the deaf stu-

597

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

dents. For [Pinto et al. 2014], visuality seems to represent, to the deaf, the main channel
for thinking and processing schemes that naturally enable the acquisition, construction
and expression of knowledge, values and experiences that otherwise would be incommu-
nicable. The visual channel allows the reading of the deaf world and is the support of
their mental processing. The authors report improvement on self-esteem, interest and en-
gagement among the deaf when drawings, images and visual manipulatives were used in
the teaching of science, geography, arts and history.

The discussion above suggests that the visual programming techniques should
be investigated. This is not quite new research area since, visual programming dates
back at least to the seventies. Pygmalion [Smith 1975] allowed programmers to visual-
ize programs’ arithmetic operators. Although there are several visual Java debuggers, to
our knowledge, none of them had been tested with the deaf. Before we proceed with
the discussion of the available visual java debuggers, we must caution that it seems that
sign language users are capable of holding less information in their short term memory
(4 £ 1 items) when compared to non-DHI (7 + 2) [Bavelier et al. 2006]. This might
be partially due to the visual-spatial nature of the information required for the DHI
[Wilson and Emmorey 2006]. Therefore, one must to aware of not overloading the vi-
sual mode when designing a java visual debugger for the deaf, or adapting an existing
one. The other relevant aspect of the tool we seek to deliver to the deaf programmer is
that is has to be free, portable and flexible enough to be used different workplace configu-
rations since we want our DHI graduates to take them to their future jobs for productivity
proposes.

In a recent survey, [Sorva et al. 2013] point that “in the last three decades, dozens
of software systems have been developed whose purpose is to illustrate the runtime be-
haviour of computer programs to beginner programmers.” We refer the reader to that
publication for more detailed text on these systems. We cite just a few of them as we
debate the desirable characteristics of the DHI visual java debugger we look for.

Jeilot 3 [Moreno et al. 2004] was created to help Java learners on basic concepts
of procedural or object-oriented programming. Its main feature is the visualisation either
total or partial of code or flow control. With Jeilot 3, pupils can, at the same time, code
and examine the visual representation of that code in execution time. During that process,
students acquire mental models that will help them in the construction and understanding
of Java programs. Jeilot 3 creators aimed to provide a tool to lower cognitive demands of
the Java learner at their first contacts with the technology.

[Alsallakh et al. 2012] proposed a plugin that allows programmers to change the
conventional Eclipse breakpoints to tracepoints and to gather information at runtime. With
this tool debugging is done by means of diagrams using an interactive interface where the
programmer can analyse the point-line pre-established code, plus the amounts and types
of data. Compared with existing Eclipse plugins for visual debugging, this plugin pro-
vides a simple process to set and display the data to be tracked. Informal assessment
showed that the stories and metaphor instance of line graphs are easy to understand. With
that programmers will have scenarios where the visual tracking will help them in under-
standing and debugging of their programs.

JGRASP [Cross Il et al. 2007] is a lightweight IDE developed to provide auto-

598

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

matic dynamic visualisations of Java data structures. Such visualisations are synchro-
nised with the source-code allowing its user to walkthrough the code when the tool is set
to debug mode. Such integration provides an unique and promising environment for the
learning of data structures in Java. The authors claim that its use has a significant and
positive impact on Java students. The visualisation techniques and animations used in
debugging sections might have a positive impact on the DHI. The approach, however, is
restricted to the teaching of Java data structures and not a general propose java debugger.

JIVE [Lessa et al. 2010] uses UML diagrams for status display and call methods
within the contexts of the objects. This tool aims to provide the developer a clearer and
more dynamic view of debugging code. JIVE allows the student to focus on specific re-
gions of the diagrams, while the diagrams show responses to queries. JIVE is designed
around two basic principles: present views of the state and execution history object, and
support for declarative queries to search through recorded executions. It can be incorpo-
rated through the eclipse plugin, so that the student can use an IDE with wide acceptance
in the developer community and debug his/her code more simple and didactic way.

As one can see, visual debuggers have extensively been used to help the teaching
of programming languages. The two of our main research objectives remain: 1) to assess
the impact of visual debuggers on the teaching of DHI and; 2) to provide a debugging tool
that can be used both for training proposes and in the workplace.

6. Conclusions and Future Work

The IT industry presents a good opportunity for the DHI to access better paying jobs.
However, for that to become a reality, the DHI performance might match those who
does not have the impairment. Our laboratory offers distance learning Java program-
ming courses for the DHI. Distance learning is an interesting option since the DHI are
geographically disperse. We wondered how our DHI graduates perform when compared
to the non-DHI who took the same 150 hour Java programming course in tasks related
to debugging. We used the industry-standart Eclipse IDE for debugging. We argue that
we should test the performance in such setting as it is the one that the DHI graduate will
most probably find in real world industry. Knowing how to debug is important to the
understanding of internal structures and behaviour of a computer program. Moreover, as
a future IT professional, DHI programmers must be able to evolve and change a code
written by a non-DHI coworker.

We noticed that there is in fact a difference in performance between the DHI and
non-DHI groups. The DHI had poorer performance and some were not even able to finish
the tasks, despite the fact that no there was no time constraint. This is an important finding
as it hinders the DHI chances of getting employed. This difference, as addressed in Sec-
tion 2, is due to language issues, since the DHI think differently about debugging as their
mechanisms of thought are based in a visual-spatial language. As a response, we turned
to discuss the use visual debuggers, the risks of overloading the DHI’s super-important
sight as they are capable of holding less information in their short term memory than non-
DHI. Despite the risks, visual debuggers seem to be worth further investigating. We then
discussed several visual debuggers and praised the fact the some of them are implemented
as Eclipse plugins, as this feature might facilitate its adoption by the industry, or at least,
among those companies willing to hire DHI programmers.

599

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

We now move on to assess several Eclipse Visual Debuggers plugins and evaluate
which one(s) can improve DHI debugging performance. We are currently defining plugin
inclusion criteria, but they all have to be open source projects as it is highly probable that
DHI Visual Debugger plugin will emerge from this research avenue.

References

Alsallakh, B., Bodesinsky, P., Gruber, A., and Miksch, S. (2012). Visual tracing for the
eclipse java debugger. In Software Maintenance and Reengineering (CSMR), 2012
16th European Conference on, pages 545-548. IEEE.

Barbosa, H. H. (2013). Habilidades matematicas iniciais em criangas surdas e ouvintes.
Cad. Cedes, 33(91):333-347.

Bavelier, D., Newport, E. L., Hall, M. L., Supalla, T., and Boutla, M. (2006). Persistent
difference in short-term memory span between sign and speech implications for cross-
linguistic comparisons. Psychological Science, 17(12):1090-1092.

Blatto-Vallee, G., Kelly, R. R., Gaustad, M. G., Porter, J., and Fonzi, J. (2007). Visual—-
spatial representation in mathematical problem solving by deaf and hearing students.
Journal of Deaf Studies and Deaf Education, 12(4):432-448.

Boroditsky, L. (2011). How language shapes thought. Scientific American, 304(2):62-65.

Cross 11, J. H., Hendrix, T. D., Jain, J., and Barowski, L. A. (2007). Dynamic object
viewers for data structures. ACM SIGCSE Bulletin, 39(1):4-8.

Gregory, S. (1998). Mathematics and deaf children. Issues in deaf education, pages
119-126.

Le Goues, C., Leino, K. R. M., and Moskal, M. (2011). The boogie verification debugger
(tool paper). In Software Engineering and Formal Methods, pages 407—414. Springer.

Lessa, D., Czyz, J. K., and Jayaraman, B. (2010). Jive: A pedagogic tool for visualizing
the execution of java programs. Technical report, Technical Report 2010-13). Retrieved
May 15, 2010, from http://www. cse. buffalo. edu/tech-reports/2010-13. pdf.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004). Visualizing programs with
jeliot 3. In Proceedings of the working conference on Advanced visual interfaces,
pages 373-376. ACM.

Nogueira, C. M. 1. and Zanquetta, M. E. M. (2009). Surdez, bilingiiismo eo ensino
tradicional de matematica: uma avaliagdo piagetiana. - deafness, bilingualism and
traditional teaching of mathematics. Zetetiké: Revista de Educagcdo Matemdtica,
16(30):219-237.

Nunes, T. and Moreno, C. (1998). Is hearing impairment a cause of difficulties in learning
mathematics. The development of mathematical skills, pages 227-254.

Perlin, G. (2004). O lugar da cultura surda. A invengdo da surdez: cultura, alteridade,
identidade e diferengca no campo da educagdo, pages 73-82.

Pinto, M. A. d. S., Gomes, A. M. d. S., and Nicot, Y. E. (2014). A experiéncia visual
como elemento facilitador na educag¢do em ciéncias para alunos surdos. Revista Areté:
Revista Amazénica de Ensino de Ciéncias, 5(09).

600

IIl Congresso Brasileiro de Informatica na Educagao (CBIE 2014)
XXV Simposio Brasileiro de Informatica na Educagéao (SBIE 2014)

Santiago, V. d. A. A. (2011). A participacdo de surdos no mercado de trabalho. In
Anhanguera Educacional, pages 1-16.

Silva, L. C., Oliveira, F. C. M. B., Freitas, A. T., and Oliveira., A. C. (2014). Introducing
the jload, a java learning object to assist the deaf. In Proceedings of the 14th IEEE
International Conference on Advanced Learning Technologies, page to appear.

Smith, D. C. (1975). Pygmalion: a creative programming environment. Technical report,
DTIC Document.

Sorva, J., Karavirta, V., and Malmi, L. (2013). A review of generic program visualization
systems for introductory programming education. Trans. Comput. Educ., 13(4):15:1—
15:64.

Traxler, C. B. (2000). The stanford achievement test: National norming and performance
standards for deaf and hard-of-hearing students. Journal of deaf studies and deaf edu-
cation, 5(4):337-348.

Wilson, M. and Emmorey, K. (2006). Comparing sign language and speech reveals a
universal limit on short-term memory capacity. Psychological Science, 17(8):682—683.

Zarfaty, Y., Nunes, T., and Bryant, P. (2004). The performance of young deaf children
in spatial and temporal number tasks. Journal of Deaf Studies and Deaf Education,
9(3):315-326.

601

