
Using Semantic Web Services to Automatically attend to
Educational Requests

Heitor Barros¹, Ivo Calado², Marlos Silva¹,
 Ig Ibert Bittencourt¹, Evandro Costa¹

¹Instituto de Computação – Universidade Federal de Alagoas (UFAL)
Av. Lourival Melo Mota, Km, 14 - Maceió - AL – Brasil

²Departamento de Sistemas e Computação- Universidade Federal de
Campina Grande, Campina Grande, Paraíba, Brasil

¹{heitorjsbarros, marlos.tacio, ig.ibert, ebcosta}@gmail.com,
²ivocalado@embedded.ufcg.edu.br

Abstract. With the emerging growth of Web Services technology, the Web is
now evolving to become a service provider. In this context, a major challenge
is the Semantic Web Services discovery and composition problem. This task is
hard because injecting context into adaptive service integration and
management raises a number of significant difficulties, i.e. defining and using
effective and practical metrics to manage adaptation in terms of comparing
ability of different services to adapt. This paper proposes an algorithm for
Semantic Web Services discovery and composition that uses similarity metrics
to achieve such goals. Additionally, an illustrative scenario in the context of
education is presented to demonstrate the use of the proposed approach.

1. Introduction

Web services are loosely coupled software components, published, located and invoked
through the web. As they rely on open standards for interfaces and protocols definitions,
its main use is as basic blocks of software construction on service-oriented architecture.
The prosperity of such approach has gained a variety of domain applications and the
research community have identified two major investment areas: Web Services
discovery and Web Services composition.

Once the services interface is already standardized in the sense that all them are
expressed in terms of input, output and a description of the internal processing, the
integration of such services is therefore encouraged. This integration, also known as
Web Services composition, has the purpose of providing the final user with a single
unified service, hiding the distribution and heterogeneity of services offered by service
providers.

However, since the services description is usually done as free text in WSDL
[Christensen 2008], adding context-based semantic description to services has gained
importance and has been driving the research on the ability of semantically matching
services instead of doing that syntactically - which naturally leads to mechanisms for
retrieving semantics from the services' syntactic description [Ma 2008]. The Web
Service that use an ontology language to specify its description is called Semantic Web
Service and an approach for automatic discovery and composition of such elements is
the focus of this work.

XX Simpósio Brasileiro de Informática na Educação (2009)

2. Related Work

As a very active field of research, the Semantic Web Services discovery and
composition problem is approached by several initiatives from some groups worldwide.

Not every time the problem of discovery is faced along with the composition
one, as seen on OWL-S/UDDI Matchmaker and OWLS-MX [Klusch 2006], which are
tools for web services semantic discovery that support OWL as the domain ontologies
description language and OWL-S [Martin 2004] for the services description. The
difference between both approaches is that while the first one makes a simple matching
between the input and output parameters, the second one uses a hybrid strategy
combining logic and concept similarity metrics for service matching, which empowers
the input and output parameters analysis by adding similarity degrees between them as
well as several methods to reach such values. Additional related work regarding
similarity metrics on services matching can be also found on WSMO-MX [Kaufer
2003].

Automatic composition has been mainly viewed as a planning problem
[Narayanan 2003] and usually treated separately from service discovery [Kuster 2007].
However, there are some works that, together with this one, clearly see the benefits of
automated service composition after a service discovery phase. One of such proposals is
the IBM STWS (Semantic Tools for Web Services) [IBM 2005], which is able of
handling services semantically described in WSDL-S whose domain ontologies are
expressed in OWL. Such tool uses an algorithm based on backward chaining procedures
to combine services starting from the given output parameters until reaching a chained
combination that fits the required service. Through its description, one notices a lack of
concerning on the quality of created compositions since there is no mention to any
evaluation strategy.

The DIANE approach, like the one proposed in this work, is meant for
automatically discover and compose semantic web services. Its main features include
fuzzy sets to analyze similarity between required and on-the-fly obtained services - be
them composed or not - and dealing with user preferences, covered by the DSD service
description language, to find the best suitable service instead of a set of input and output
parameters. To the best of our knowledge, the differences between both approaches are
the use of W3C's recommended OWL-S language for semantic services descriptions
and the similarity metrics used by OWLS-MX and WSMO-MX for matchmaking.

3. The Proposed Algorithm

This section presents the details of the proposed algorithm. It allows the automatic
discovery and composition of semantic Web Services described in OWL-S and uses
similarity metrics to evaluate the quality of the proposed solution. This work was
developed as an extension of [Giv 2004], from which the following features can be
listed:

• Direct and indirect matching of services;

• Weighted directed graph representation for the services relationships;

• Shortest path algorithms to locate the best path in the weighted graph, increasing
composition accuracy.

XX Simpósio Brasileiro de Informática na Educação (2009)

The algorithm implementation was done using the Java language with the
MindSwap Application Programming Interface (API) to create and manipulate objects
which represent semantic services.

3.1. The proposed algorithm

The proposed algorithm is composed of two execution steps, Figure 1. The first one is
executed during the insertion of the service into the search directory. This step is called
“preprocessing step”. The second one, performed during discovery events, is called
“processing request step”.

Figure 1. Algorithm's steps.

3.1.1 Preprocessing step

This step includes the tasks insertion and removal from the service directory. The search
tool keeps updating to always provide consistent information about the stored services.
The second one, performed during discovery events, is called 'request processing step'.

 The nodes represent the services;

 The edges represent the relationship among services.

Every relation that is established between two services has a determined weight
that is equivalent to the compatibility of the first service's input parameters to the
second one's output parameters. Such compatibility measurement is defined through
similarity metrics, as defined in [Klusch 2006].

XX Simpósio Brasileiro de Informática na Educação (2009)

From the graph-weighted model, it is possible to construct paths and
consequently enable services composition. For each newly inserted service, similarity
metrics between this service and the ones already in the graph structure will be
calculated. The results will vary on the adopted similarity metric.

3.1.2. Processing request step

The format of a request is a 'perfect' service described in OWL-S. This service presents
all the desired input and output parameters of the real service to be discovered. The
return of that execution is a Java object (Service class) representing the desired service.
This object can represent either atomic or composite services. This feature creates a
layer of abstraction to the client application, since the service composition becomes
transparent.

Summarizing, here are the service discovery process steps.

1. Create two empty sets: the first one contains the services whose inputs match the
request, called I, while the other set contains the services whose output match
the request, this one is called O;

2. Scan all nodes of the graph, and using the compatibility filter as basis, perform a
search for services that fit for I and O sets;

3. Try to establish an intersection between the sets I and O through selecting the
requests is most compatible services. If such operation is successful, then there
is a direct matching;

4. Establish a Cartesian product between I and O;

5. Input and Output weights are assigned to the graph edges as defined by the
adopted similarity metric;

6. A graph search algorithm is applied to find the shortest path between the
Cartesian product nodes. The Dijkstra algorithm is being used in this
implementation, but that is not a restriction. Other similar and improved
algorithms could be used instead;

7. The results of direct and indirect matchings are compared and the service, or
chain of services, with the highest similarity value, according to the request, is
selected;

8. If a chain of services was chosen, then a composite service is created. A bind
between the input and output parameters is done and the sequential execution of
all bound services is automatically performed;

9. The service is returned;

10. If neither a direct matching nor an indirect one satisfies the request (the sets I
and/or O are empty or there is no path at all between an element of I and an
element of O) then nil is returned.

3.2. Extensions of the original algorithm

As previously mentioned, the algorithm presented in this work is based on the one
presented in [Giv 2004]. This way, additional features were implemented to improve the
discovery process. The list of implemented improvements is presented below:

XX Simpósio Brasileiro de Informática na Educação (2009)

 Direct and indirect matching are defined, then the best set of services that meet
the request is identified, since that depends on the services characteristics, a
composite service can be more suitable to the request than a single service;

 Weight measurements were added to the edges of the graph. This enables
verifying services relationship strength, which means semantic proximity. The
weight in each edge is based in the use of similarity metrics among the
parameters of the related services. The original algorithm does not comprise
handling a weighted graph;

 A Cartesian product is created between the input and output set of services (see
3.1.2) instead of just choosing a service in each set, as it occurs in the original
algorithm. This change, although prone to increase processing, allows a more
refined service composition.

 A graph search algorithm has been used to find the shortest paths in a weighted
graph.

4. Similarity metrics

Similarity metrics has been used by a large number of communities, such as statistics,
artificial intelligence and databases. Measuring similarity between entities like internet
documents, letters, images, software source code are some of its application.

The analysis of such similarities consists in comparing two entities while aiming
to determine how similar they are. A big part of the similarity functions are metrics that
treat data instances in a metric space, establishing distances in this space to define a
degree of similarity. For such calculations, the concepts of vectorial spaces are used,
where entities that are being compared are converted into vectors, and algebraic
expressions (Euclidean distance, cosine etc) a measurement of distance between these
vectors can be calculated.

4.1 Cosine Similarity

Cosine similarity treats entities as n-dimensional vectors. As this metrics is based on the
distance between two vectors, Figure 2 which is given by the angle between them, the
cosine of such angle will represent the similarity. By definition, cosine is established in
the interval 0 <= c <= 1, where we interpret two vectors to be identical when the
measure is 1 and the opposite when the result is 0, which means the vectors are
orthogonal and thus, are not compatible.

Figure 2. Cosine Similarity.

The proposed algorithm uses this metric to seek for a service that mostly fit the
request, directly or indirectly. This approach uses the input and output parameters of

XX Simpósio Brasileiro de Informática na Educação (2009)

each service in order to obtain a similarity level and being able to decide which one
adequate to the requester.

4.2. Example

In order to simplify the similarity calculation of the two entities, an Educational
ontology is used. To compare the similarity between the Problem and Content entities,
the following steps are taken:

4.2.1. Step1 – Defining the entities' ancestor

Going through the ontology a scheme is put together with all the entities' ancestor.

 (Problem) – (Problem, Resource)

 (Concept) – (Concept, Resource)

4.2.2. Step2 – Define all entities involved

Once the each entitie's ancestor re define, the union of these sets is taken in order to
define which entities are part of the calculation:

 (Problem U Concept) = (Problem, Concept, Resource)

4.2.3. Step3 – Building comparison vectors

Based on the vectors built on steps 1 and 2, the comparison between the ancestor and
the union set is made, building a new vector with the result of this comparison. If one of
the ancestor does not contains an entity defined in the union set, 0 is added to the
respective index of the results vector, and 1 of the opposite occurs.

 Building vector V1:

 (Problem) = (Problem, Resource)

 (Problem U Concept) = (Problem, Concept, Resource)

 V1 = (1, 0, 1)

 Building vector V2:

 (Concept) = (Concept, Resource)

 (Problem U Concept) = (Problem, Concept, Resource)

 V1 = (0, 1, 1)

4.2.4. Step4 -Calculating the cosine of the angle between the vectors

With the vectors at hand, the cosine between them is computed, and the closer it is to 1
the more similar the entities

 are.

:

cos(θ) = v1.v1 = 1 = 0,50

 |v1||v2| 2

So, the similarity between these entities is 0,50

5. Illustrative Scenario

XX Simpósio Brasileiro de Informática na Educação (2009)

The aim of this section is to illustrate the features of the proposed algorithm through the
development of a case study in e-learning. In this scenario, a student is interacting with
the system in a problem solving activity, where the systems use the algorithm to provide
a hint to the student based on the problem.

Some semantic web services were developed to provide some pedagogical
resources based on domain ontology, Figure 3, such as:

• ProblemConcept Service: it gets a concept based on a problem. The input of this
service is Problem and the output is a Concept;

• ConceptContent Service: the input of this service is concept and the output is a
content;

• ContentExplanation Service: the input of this service is content and the output is
an explanation;

• ShowResource Service: this service indicates which is the next resource to be
viewed by the student. It has a user as input and a resource as output.

Inside this illustrative scenario, a software customer possible and desired
interaction would be a service that returns an explanation based on a Multiple Choice
Problem presented. However, there is no service to fulfill this requirement. From this
scenario, services composition would dramatically help increasing process speed and
easing process complexity to the user.

Figure 3. Domain Ontology.

The composition evolving these three services (ProblemConcept Service,
ConceptContent Service, and ContentExplanation Service.) is fit for solving the
described problem with some restrictions. The input parameter for the ProblemConcept
Service is not the same as the one from the required service. However, due to the
services' semantic descriptions, it is possible to infer information about such services
parameters to allow the use of non-exact matching services, for instance , subtypes,
supertypes and so on. From this property on, there are several propositions that make
use of such type of inference. Our proposal, however, uses, as already mentioned,
similarity metrics aiming a more accurate evaluation of each parameter's characteristics.
The use of such metrics enables the establishment of a relation between Problem and
MultipleChoiceProblem classes to create a composition that fulfills the requirement.

XX Simpósio Brasileiro de Informática na Educação (2009)

The creation of a semantic description model is mandatory to enable the search
for a specific service. The description of the above example will have the
MultipleChoiceProblem as input and a Explanation as output, provided that we are
searching for a service that executes all the processes inside the E-Learning workflow.

In the pre-processing step, all the E-Learning related services are added to the
services repository as well as described in section 3.1.1. Following the services
repository population, there is the request processing step. In this step, the service
model of the request is used in the search for the most similar service (or service
composition). Also, similarity metrics are used to perform the comparison between the
requested and the repository services, and the most similar entry is chosen as a possible
direct match. After having defined a probable direct matching, the search for a service
composition whose similarity is close to the requested service is begun, Figure 4.

Figure 4. Similarity Graph.

To perform such search, a search for the shortest path in the weighted graph is
performed to point the chosen composition and the composition-related services are
pointed as possible indirect match. The reason for selecting the path with the shortest
cost is that the weight of the edges represent the similarity between the output of a
service and the input of the adjacent service, which means the smallest lost of
information between services. The results of the possible direct and indirect matching
are shown on Table 1.

Services Similarities

Direct Matching Concept-Explanation Service 0295875

Indirect
Matching

[ProblemConcept, ConceptContent,

ConceptExplanation]

0,09175

Table 1: Results

After the definition of the possible direct and indirect matches, the similarity
metrics are used again to help choosing the most similar service in relation to the
request and the choice is returned as the search result. In the example, the returned
result is the composition from figure 5.

XX Simpósio Brasileiro de Informática na Educação (2009)

Figure 5. Services Composition.

As seen on table 1, the composition was chosen through the detected similarities
since it presents a higher similarity to the request. It is worthwhile quoting that,
although the ConceptExplanation service is present in both direct and indirect matches -
that could lead the reader to think on picking the direct match as a search result because
it would be a more direct execution - the indirect match was chosen as final result. Such
behavior can be clarified due to the ConceptExplanation output parameters have low
similarity, which affects its matching degree, while being part of a composition, the
whole set has a higher matching degree, which therefore makes it more suitable for an
answer.

Finally, the scenario tried to illustrate the developed algorithm work, exhibiting
its service discovery capabilities by using services matching, composition and similarity
metrics.

6. Conclusion and Future Work

Although there is no widely accepted solution for web services discovery and
composition in terms of strategy for selection, composition and metrics for measuring
the quality of the delivered service, this paper intended to extend the scope of the
discussion to the semantic web environment, which is expected to continue challenging
researches worldwide, and presented an algorithm for automatic discovery and
composition of Semantic Web Services. As an evolution of a previously existing
algorithm for the same purpose, this new approach brought the use of similarity metrics
to help improving the quality of composite-services.

As future work, we quote the importance of analyzing which similarity metric
gives the best approximation values to work on and compare them. This is intended to
be done by exercising the algorithm through the many scenarios and situations available
on literature. This way, subsidy for new improvements is expected to arise shortly.
Examples of such investment areas are the automatic selection or simultaneous use of
all available similarity metrics to better help software to decide and reach adaptation
goals on any desired composition scenario.

References

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. Web services
description language (wsdl) 1.1. http://www.w3.org/TR/wsdl, March 2001. Last
access on August of 2008.

Giv, R. D., Kalali, B., Zhang, S., Zhong, N. and Lopez- Ortiz, A. Algorithms for direct
and indirect semantic matching of web services. Technical report, University of
Waterloo, 2004.

IBM. Semantic tools for web services. http://alphaworks.ibm.com/tech/wssem, June
2005. Last access on August of 2008.

XX Simpósio Brasileiro de Informática na Educação (2009)

Kaufer F. and Klusch, M. Wsmo-mx: A logic programming based hybrid service
matchmaker. European Conference on Web Services (ECOWS’06), pages 161–170,
2003.

Klusch, M., Fries, B. and Sycara, K. Automated semantic web service discovery with
owls-mx. In AAMAS ’06: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 915–922, New York, NY, USA,
2006. ACM Press.

Kuster, U., KunigRies, B., Stern, M. and M. K. . Diane an integrated approach to
automated service discovery, matchmaking and composition. WWW 2007, pages P
1033–1042., 2007.

Ma, J., Zhang, Y. and He, J. Efficiently finding web services using a clustering semantic
approach. In CSSSIA, page 5, 2008.

Martin, D., Burstein, M., Hobbs, J. R., Lassila, O., Mc-Dermott, D., Mcilraith, S. A.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N. and
Sycara, K. Semantic markup for web services. http://www.w3.org/Submission/OWL-
S/, November 2004. Lat access on August of 2008.

Narayanan, S. and McIlraith, S. Analysis and simulation of web services. Computer
Networkds,, 42(5):675?693., 2003.

XX Simpósio Brasileiro de Informática na Educação (2009)

	1. Introduction
	2. Related Work
	3. The Proposed Algorithm
	3.1. The proposed algorithm
	3.1.1 Preprocessing step
	3.1.2. Processing request step
	3.2. Extensions of the original algorithm
	4. Similarity metrics
	4.1 Cosine Similarity
	4.2. Example
	4.2.1. Step1 – Defining the entities' ancestor
	4.2.2. Step2 – Define all entities involved
	4.2.3. Step3 – Building comparison vectors
	4.2.4. Step4 -Calculating the cosine of the angle between the vectors
	5. Illustrative Scenario
	6. Conclusion and Future Work
	References

