Sistemas Tutores Inteligentes que Detectam as Emoções dos Estudantes: um Mapeamento Sistemático

Helena Macedo Reis, Patrícia Augustin Jaques Maillard, Seiji Isotani

Resumo


As emoções vivenciadas pelos estudantes podem influenciar negativamente ou positivamente o aprendizado. Dessa forma, a detecção das emoções dos estudantes por softwares educacionais, como Sistemas Tutores Afetivos (STAs), permite a esses sistemas fornecer uma resposta mais adequada com objetivo de maximizar o aprendizado.  Esse artigo apresenta um mapeamento sistemático que foi conduzido com o objetivo de investigar os mecanismos de detecção das emoções empregados por STAs. No total, foram analisados 462 estudos na área. Dentre estes estudos, 84 deles estavam relacionados com STAs e apenas 40 deles satisfizeram os critérios de inclusão e exclusão definidos neste trabalho. Como resultado, verificou-se que a maioria dos estudos usa a análise das expressões faciais como fonte principal de reconhecimento da emoção do estudante, seguido de sinais fisiológicos, linguística e dados comportamentais. Embora existam vários mecanismos para a detecção da emoção do estudante, ainda há carência de estudos que expliquem a relação entre emoções e aprendizado, bem como quais caminhos devem ser seguidos utilizando estas emoções com o propósito de tornar o ensino e a aprendizagem mais efetivos.


Palavras-chave


Sistema Tutor Afetivo, Aprendizagem, Emoções, Computação Afetiva

Texto completo:

PDF

Referências


Adams, D.M.; McLaren, B.M; Durkin, K. ; Mayer, R.E.; Rittle-Johnson, B.; Isotani, S; Velsen, M.V. (2014). Using erroneous examples to improve mathematics learning with a web-based tutoring system Computers in Human Behavior, 36 (2014), pp. 401–411. doi: 10.1016/j.chb.2014.03.053.

Allanson, J., Fairclough, S.H. (2004). A research agenda for physiological computing. Interacting with Computers 16 (5), 857–878. doi: 10.1016/j.intcom.2004.08.001.

Allen, L. K. ; Mills, C.; Jacovina, M. E.; Crossley, S.; D'Mello, S. e McNamara, D. S. (2016).Investigating Boredom and Engagement during Writing Using Multiple Sources of Information: The Essay, The Writer, and Keystrokes. In Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (LAK '16). ACM, New York, NY, USA, 114-123. doi: 10.1145/2883851.2883939.

Alzoubi, O.; D'Mello, S. e Calvo, R. (2012). Detecting naturalistic expressions of nonbasic affect using physiological signals. IEEE Transactions on Affective Computing, 3(3): 298-310. doi: 10.1109/T-AFFC.2012.4.

Ammar, M. B.; Neji, M.; Alimi, A. M. e Gouardères, G. (2010). The Affective Tutoring System.Expert Systems with Applications, 37(4): 3013-3023. doi: 10.1016/j.eswa.2009.09.031.

Arroyo, I.; Cooper, D. G.; Burleson, W.; Woolf, B.P.; Muldner, K. e Christopherson, R. (2009). Emotion Sensors Go To School. In Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, Vania Dimitrova, Riichiro Mizoguchi, Benedict du Boulay, and Art Graesser (Eds.). IOS Press, Amsterdam, The Netherlands, The Netherlands, 17-24. [GS Search].

Azevedo, B.F.T.; Tavares, O.L. e Cury, D. (1999). MUTANTIS – Um Sistema Tutor Inteligente Multi-Agente para o Ensino-Aprendizagem de Conceitos. In: X Simpósio Brasileiro de Informática na Educação, 1999, Curitiba. Anais do X Simpósio Brasileiro de Informática na Educação. Curitiba: Sociedade Brasileira de Computação, 1999. p. 161-168. [GS Search].

Babad, E. (2005). Chapter 7: Nonverbal Behavior in Education. New Handbook of Methods in Nonverbal Behavior Research. Editores: Harrigan, J. e Rosenthal, R. [GS Search[.

Baker, R. S.; D'Mello, S. K.; Rodrigo, M. T. e Graesser, A. C. (2010). Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive–affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies, 68 (4), 223-241. doi: 10.1016/j.ijhcs.2009.12.003.

Baker, R. S.; Ocumpaugh, J.; Gowda, S. M.; Kamarainen; A. M. e Metcalf, S. J. (2014). Extending Log-Based Affect Detection to a Multi-User Virtual Environment for Science, 8538: 290-300. doi: 10.1007/978-3-319-08786-3_25.

Barbosa, N.; Cavalcanti, E. S.; Neves, E. A. L.; Chaves, T. A.; Coutinho, F. A.; e Mortimer, E. F. (2009). A expressividade do professor universitário como fator cognitivo no ensino-aprendizagem. Ciências & Cognição, 14(1): 75-102. Recuperado em 24 de outubro de 2016, de http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1806-58212009000100006&lng=pt&tlng=pt.

Bernacki, M. L., Aleven, V., & Nokes-Malach, T. J. (2014). Stability and change in adolescents’ task-specific achievement goals and implications for learning mathematics with intelligent tutors. Computers in Human behavior, 37, 73–80. doi: 10.1016/j.chb.2014.04.009.

Bicho, L. M. D., & Pereira, S. R. (2007). Stress ocupacional. Stress Ocupacional. Instituto Politécnico de Coimbra, Departamento de Engenharia Civil, Portugal [periódico na internet].

Borges, S. D. S., Reis, H. M., Durelli, V. H., Bittencourt, I. I., Jaques, P. A., & Isotani, S. (2013). Gamificação Aplicada à Educação: Um Mapeamento Sistemático. In Anais do Simpósio Brasileiro de Informática na Educação (Vol. 24, No. 1, p. 234). doi: 10.5753/cbie.sbie.2013.234.

Cabada, R.; Estrada, M.; Hernández, F. e Bustillos, R. (2014). Intelligent tutoring system with affective learning for mathematics. Human-Inspired Computing and Its Applications, 8856: 483-493. doi: 10.1007/978-3-319-13647-9_43.

Cabada, R.; Estrada, M.; Hernández, F. e Bustillos, R. (2015). An affective learning environment for Java. IEEE 15th International Conference on Advanced Learning Technologies, Hualien, 2015, pp. 350-354. doi: 10.1109/ICALT.2015.53.

Calvo, R. e D'Mello, S. (2012). Frontiers of affect-aware learning technologies. in IEEE Intelligent Systems, 27(6):86-89. doi: 10.1109/MIS.2012.110.

Carrasco, M.C.O. (2001). Fonoaudiologia Empresarial. São Paulo: Editora Lovise.

Conati, C. (2002). Probabilistic assessment of user's emotions in educational games. Applied Artificial Intelligence, 16(7-8): 555-575. doi: 10.1080/08839510290030390.

Conati, C.; Maclaren, H. (2009). Empirically building and evaluating a probabilistic model of user affect. User Model. User-Adapted Interact. 19:267–303. doi: 10.1007/s11257-009-9062-8.

Curilem, S.G.; Barbosa; A.R., de Azevedo, F.M. (2007). Intelligent tutoring systems: Formalization as automata and interface design using neural networks, Computers & Education, 49(3):545–561. doi: 10.1016/j.compedu.2005.10.005.

D'Mello, S. e Calvo, R. (2013). Beyond the basic emotions: what should affective computing compute?. In CHI '13 Extended Abstracts on Human Factors in Computing Systems (CHI EA '13). ACM, New York, NY, USA, 2287-2294. doi: 10.1145/2468356.2468751.

D'Mello, S. e Graesser, A. (2013). AutoTutor and affective autotutor: Learning by talking with cognitively and emotionally intelligent computers that talk back. ACM Trans. Interact. Intell. Syst. 2, 4, Article 23 (January 2013), 39 pages. doi: 10.1145/2395123.2395128.

D'Mello, S. K., Lehman, B. Pekrun, R., e Graesser, A. C. (2014). Confusion Can be Beneficial For Learning, Learning & Instruction, 29(1), 153-170. doi: 10.1016/j.learninstruc.2012.05.003.

D'Mello, S.; Olney, A.; Williams, C. e Hays, P. (2012). Gaze tutor: A gaze-reactive intelligent tutoring system. International Journal of Human-Computer Studies, 70 (5):377–398. doi: 10.1016/j.ijhcs.2012.01.004.

D'Mello,S.; Lehman, B.; Sullins, J.; Daigle, R.; Combs, R.; Vogt, K. (2010). A time for emoting: when affect-sensitivity is and isn't effective at promoting deep learning. J. Kay, V. Aleven (Eds.), Proceedings of 10th International Conference on Intelligent Tutoring Systems, Springer, Berlin/Heidelberg , pp. 245–254. doi: 10.1007/978-3-642-13388-6_29.

Doddannara, L.; Gowda, S.; Baker, R.; Gowda, S. e De Carvalho, A. (2013). Exploring the relationships between design, students' affective states, and disengaged behaviors within an its, 7926:31-40. doi: 10.1016/S0164-1212(99)00102-8.

Douglas-Cowie, E.; Cowie, R.; Sneddon, I.; Cox, C.; Lowry, O.; McRorie, M. et al. (2007). The HUMAINE database: addressing the collection and annotation of naturalistic and induced emotional data. In A. R. Paiva, R. Prada & R. Picard (Eds), Affective computing and intelligent interaction (pp. 488–500). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-74889-2_43.

Dybå, T. Dingsøyr, T. e Hanssen, G. K. (2007). Applying Systematic Reviews to Diverse Study Types: An Experience Report. In 1st International Symposium on Empirical Software Engineering and Measurement, pages 225–234. doi: 10.1109/ESEM.2007.21.

Ekman, P. (1973). Cross-cultural studies of facial expression. New York: Academic. [ GS Search].

Ekman, P. (2003). Emotions revealed (2nd ed.). New York: Times Books. Institute of International Studues. (2004). face to face the science of reading faces part 1: conversation in history With Paul Ekman). University Of California. Berkeley. Disponível em https://www.youtube.com/watch?v=6uABMfsUFls.

Ekman, P. e Davidson, R.J. (1993). Voluntary smiling changes regional brain activity. Psychological Science, 4, 342-345. [GS Search].

Fabron E. M. G. (2006). A voz como recurso didático: Reconhecimento e julgamento de suas qualidades. Tese de Doutorado. Universidade Estadual Paulista, Marília, SP. [GS Search].

Feldman, J.; Goldwasser, G. P. (2004). Eletrocardiograma: recomendações para a sua interpretação. Revista da SOCERJ, 17(4):251- 256. [GS Search].

Fredrickson, B. L. (1998). What good are positive emotions?. Review of general psychology, 2(3):300. doi: 10.1037/1089-2680.2.3.300.

Goldberg, B.; Brawner, K.W.; Holden, H.K. (2012). Efficacy of Measuring Engagement during Computer-Based Training with Low-Cost Electroencephalogram (EEG) Sensor Outputs. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1):198–202. doi: 10.1177/1071181312561018.

Graesser, A. C. e D’Mello, S. K. (2014). Emotions in Advanced Learning Technologies. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education: (pp. 473-493). Routledge: New York, NY. doi: 10.1007/s40593-016-0126-8.

Grafsgaard, J.F.; Wiggins, J.B.; Boyer, K.E.; Wiebe, E.N. e Lester, J.C. (2013). Automatically Recognizing Facial Indicators of Frustration: A Learning-centric Analysis. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII '13). IEEE Computer Society, Washington, DC, USA, 159-165. doi: 10.1109/ACII.2013.33.

Guimarães, J. I.; Nicolau, J. C.; Polanczyk, C. A.; Pastore, C. A.; Pinho, J. A.; Bacellar, M. S. C.; Ribeiro, D. G. L.; Darwich, R. N.; Ribeiro, A. L. P.; Dunda, M. M. E.; Germiniani, H.; França, F. F.; Saraiva, L.; Ribeiro, C. M. S.; Ginefra, P. G.; Iseu, F.; Eney, R.; Andres, P.; Anisio, F.; Firmiani; A. C.; Grupi, C.; Pinho, C.; Lima, E. V.; Kaiser, E.; Brito, F. S.; Vinhas, G. L. C; Schwartz, H.; Grindler, J.; Aziz, J. L.; Figueiredo, M.; Molina, M. S.; Martinelli, M.; Tobias, N.; Sanches, P. C. R.; Moffa, P. J.; Attanes Neto, S. e Nishioka, S. (2003). Diretriz de interpretação de eletrocardiograma de repouso. Arquivos Brasileiros de Cardiologia, 80(2): 1-18. doi: 10.1590/S0066-782X2003000800001.

Harley, J. A. e Picard, R. W. (2005). Detecting stress during real-world driving tasks using physiological sensors. Intelligent Transportation Systems, IEEE Transactions On, 6, 156–166. doi: 10.1109/TITS.2005.848368.

Harley, J. M.; Bouchet, F.; Hussain, M. S.; Azevedof, R.; Calvo, R. (2015). A multi-componential analysis of emotions during complex learning with an intelligent multi-agent system. Computers in Human Behavior, 48:615–625. doi: 10.1016/j.chb.2015.02.013.

Harley, J.; Carter, C.; Papaionnou, N.; Bouchet, F.; Landis, R.; Azevedo, R. e Karabachian, L. (2016). Examining the predictive relationship between personality and emotion traits and students’ agent-directed emotions: towards emotionally-adaptive agent-based learning environments.User Modeling and User-Adapted Interaction 26(2):177–219. doi: 10.1007/s11257-016-9169-7.

Harley, J.M.; Bouchet, F. e Azevedo, R. (2013). Aligning and Comparing Data on Emotions Experienced during Learning with MetaTutor. Lecture Notes in Computer Science. Artificial Intelligence in Education, 7926:61-70. doi: 10.1007/978-3-642-39112-5_7.

Hernández, Y.; Arroyo-Figueroa, G. e Sucar, L. (2015). A model of affect and learning for intelligent tutors. Journal of Universal Computer Science, vol. 21, no. 7 (2015), 912-934. doi: 10.3217/jucs-021-07-0912.

Hyun, K.; Kim, E.H. e Kwak, Y.K. (2005). Improvement of emotion recognition by Bayesian classifier using non-zero-pitch concept. In: IEEE International Workshop on Robot and Human Interactive Communication:312-316. doi: 10.1109/ROMAN.2005.1513797.

Iliou, T. e Anagnostopoulos, C.N. (2009). Comparison of different classifiers for emotion recognition. In: IEEE. 13th Panhellenic Conference on Informatics: 102-106. doi: 10.1109/PCI.2009.7.

Jaques, N.; Conati, C.; Harley, J. & Azevedo, R. (2014). Predicting affect from gaze data during interaction with an intelligent tutoring system. v8474. pp 29-38. doi: 10.1007/978-3-319-07221-0_4.

Jaques, P. A.; Nunes, M. A. S. N. (2012). Ambientes Inteligentes de Aprendizagem que inferem, expressam e possuem emoções e personalidade. In: Seiji Isotani e Fernanda C. A. Campos. (Org.). Jornada de Atualização em Informática na Educação- JAIE 2012. 1ed.Porto Alegre: SBC, 2012, v. 1, p. 32-71. [GS Search].

Jaques, P. e Vicari, R. (2007). A BDI approach to infer student's emotions in an intelligent learning environment.Computers & Education. 49(2): 360–384. doi: 10.1016/j.compedu.2005.09.002.

Jaques, P.A.; Nunes, M.A.S.N., Isotani, S. e Bittencourt, Ig. (2012). Computação Afetiva aplicada à Educação: Dotando Sistemas Tutores Inteligentes de Habilidades Sociais. Workshop de Desafios da Computação Aplicada à Educação (desafie). [GS Search].

Jiménez, S.; Juárez-Ramírez R.; Navarro, R.; Coronel A. e Castillo, V. H. (2016). "Architecting an Intelligent Tutoring System with an Affective Dialogue Module," 2016 4th International Conference in Software Engineering Research and Innovation (CONISOFT), Puebla, 2016, pp. 122-129. doi: 10.1109/CONISOFT.2016.27.

Kapoor, A.; Burleson, W. e Picard, R. W.(2007). Automatic prediction of frustration. Int. J. Human-Computer Studies 65:724–736. doi: 10.1016/j.ijhcs.2007.02.003.

Kaye, J. J. (2009). Some statistical analyses of CHI. In Proceedings of the SIGCHI conference on human factors in computing systems (CHI ‘2009)—extended abstracts (alt.chi) (pp. 2585–2593). doi: 10.1145/1520340.1520364.

Khan, R.; A. Meyer, H. Konik, and S. Bouakaz (2011). Facial expression recognition using entropy and brightness features. In 11th International Conference on Intelligent Systems Design and Applications (ISDA). doi: 10.1109/ISDA.2011.6121744.

Khan, R.; A. Meyer, H. Konik, and S. Bouakaz (2013). Framework for reliable, real-time facial expression recognition for low resolution images. Pattern Recognition Letters 34(10), 1159-1168. doi: 10.1016/j.patrec.2013.03.022.

Koedinger, K. R.; Aleven, V.; Roll, I.; e Baker, R. (2009). In vivo experiments on whether supporting metacognition in intelligent tutoring systems yields robust learning. Handbook of metacognition in education, 897-964. [GS Search].

Koelstra, S.; Muhl, C.; Soleymani, M.; Jong-Seok, L.; Yazdani, A.; Ebrahimi, T. et al (2012). DEAP: a database for emotion analysis; using physiological signals. Affective Computing, IEEE Transactions On, 3, 18–31. doi: 10.1109/T-AFFC.2011.15.

Kyrillos, L.R.; Cotes, C. e Feijó, D. (2003). Voz e corpo na TV: a fonoaudiologia a serviço da comunicação. São Paulo: Editora Globo. [GS Search].

Lagud, M. e Rodrigo, M. (2010). The affective and learning profiles of students using an intelligent tutoring system for Algebra. Intelligent Tutoring Systems, 6094:255-263. doi: 10.1007/978-3-642-13388-6_30.

Lane, H. C. (2006). Intelligent tutoring systems: Prospects for guided practice and efficient learning. In Whitepaper for the Army's Science of Learning Workshop (p. 1). doi: 10.1.1.97.9593.

Latham, A., Crockett, K., & McLean, D. (2014). An adaptation algorithm for an intelligent natural language tutoring system. Computers & Education, 71, 97–110. doi: 10.1016/j.compedu.2013.09.014.

Lehman, B., D'Mello, S.; Strain, A.; Mills, C.; Gross, M.; Dobbins, A.; Wallace, P.; Millis, K.; e Graesser, A. (2013). Inducing and Tracking Confusion with Contradictions during Complex Learning. Int. J. Artif. Intell. Ed. 22, 1-2 (January 2013), 85-105. doi: 10.1007/978-3-642-21869-9_24.

Levenson, R. W.; Ekman, P.; Heider, K. e Friesen, W. V. (1992). Emotion and autonomic nervous system activity in the Minangkabau of West Sumatra. Journal of Personality and Social Psychology, 62, 972-288. doi: 10.1037/0022-3514.62.6.972.

Lin, H. C. K., Su, S. H., Chao, C. J., Hsieh, C. Y., & Tsai, S. C. (2016). Construction of Multi-mode Affective Learning System: Taking Affective Design as an Example. Educational Technology & Society, 19 (2), 132–147. [GS Search].

Lin, H.-C.; Chao, C.-J. b. e Huang, T.-C. (2015). From a perspective on foreign language learning anxiety to develop an affective tutoring system. Educational Technology Research and Development, 63(5):727–747. doi: 10.1007/s11423-015-9385-6.

Lin, H-C. K.; Wu, C.-H.; Hsueh, Y.-P. (2014) The influence of using affective tutoring system in accounting remedial instruction on learning performance and usability. Computers in Human Behavior, 41:514-522. doi: 10.1016/j.chb.2014.09.052.

Lin, Y.L. e Wei, G. (2005). Speech emotion recognition based on HMM and SVM. In: IEEE. Proceedings of 2005 International Conference on Machine Learning and Cybernectics, 8:4898-4901. doi: 10.1109/ICMLC.2005.1527805.

Mao, X. e Li, Z. (2010). Agent based affective tutoring systems: A pilot study. Computers & Education, 55(1):202–208. doi: 10.1016/j.compedu.2010.01.005.

Matsumoto, D., e Hwang, H. S. (2011). Training the ability to read microexpressions of emotion improves emotional competence on the job. Motivation & Emotion. Motivation and Emotion 35(2):181-191. [GS Search].

McNeill, D. (1995) Hand and Mind: What Gestures Reveal about Thought. Chicago: Univesity of Chicago Press. [GS Search].

Medonça, L.R. e Mustaro, N.P. (2011). Elementos imersivos e de narrativa como fatores motivacionais em serious games In: SBC – Proceedings of SBGames, Salvador, BA, Brasil, 2011. [GS Search].

Mehrabian, A. (1971). Silent messages, Wadsworth, California: Belmont. [GS Search].

Morais, F., da Silva, J., Reis, H., Isotani, S., & Jaques, P. (2017, October). Computação Afetiva aplicada à Educação: uma revisão sistemática das pesquisas publicadas no Brasil. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 28, No. 1, p. 163). [GS Search].

Muñoz, K.; Kevitt, P.; Lunney, T.; Noguez, J. & Neri, L. (2011). PlayPhysics: An emotional games learning environment for teaching physics. Knowledge Science, Engineering and Management, 6291:400-411. doi: 10.1007/978-3-642-15280-1_37.

Muñoz, K.; Mc Kevitt, P. ; Lunney, T.; Noguez, J e Neri, L. (2011)b. An emotional student model for game-play adaptation, Entertainment Computing, 2(2):133-141. doi: 10.1016/j.entcom.2010.12.006.

Nkambou, R. b.(2006). A framework for affective intelligent tutoring systems.2006 7th International Conference on Information Technology Based Higher Education and Training, Ultimo, NSW, 2006, pp. nil2-nil8. doi: 10.1109/ITHET.2006.339720.

Norman, D. A. (1981). Twelve Issues for Cognitive Science. In Perspectives on Cognitive Science (pp. 265-295). Hillsdale, NJ: Erlbaum. doi: 10.1016/S0364-0213(81)80002-X.

Nunes, T.M., Jaques, P.A. (2014). Animated Pedagogical Agents as a non-restrictive approach to Gaming The System. Revista Brasileira de Informática na Educação, 22 (1): 147-163. doi: 10.5753/RBIE.2014.22.01.147.

Overmyer, S.P. (1999). If only my intelligent pedagogical agent could! Journal of Educational Technology & Society, 2(1). [GS Search].

Padrón-Rivera, G.; Rebolledo-Mendez, G.; Parra, P. & Huerta-Pacheco, N. (2016). Identification of Action Units Related to Affective States in a Tutoring System for Mathematics. Educational Technology & Society 19 (2), 77-86. doi: stable/jeductechsoci.19.2.77.

Pekrun, R. (2006). The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educ. Psychol. Rev. 18, 315–341. doi: 10.1007/s10648-006-9029-9.

Pekrun, R. (2011). Emotions as drivers of learning and cognitive development. In: Calvo, R.A., D’Mello, S.K. (eds.) New Perspectives on Affect and Learning Technologies, pp. 23–39. Springer, New York. doi: 10.1007/978-1-4419-9625-1_3.

Petersen, K., Feldt, R., Mujtaba, S. & Mattsson, M. (2008) Systematic mapping studies in software engineering. Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, 68-77. [GS Search].

Piaget, J. (1989) Les relations entre l’intelligence et l’affectivité dans le developpement de l’enfant. Rimé, B.; Scherer, K. (Eds.) Les Émotions. Textes de base en psychologie . Paris: Delachaux et Niestlé, 1989. pp. 75-95. [GS Search].

Picard, R.W. (1997). Affective Computing. MIT Press, Cambridge, MA. [GS Search].

Picard, R.W. (1998). Towards Agents that Recognize Emotion. In Proceedings of IMAGINA, Monaco. [GS Search].

Pretorius, R. e Budgen, D. (2008) A Mapping Study on Empirical Evidence Related to the Models and Forms used in the UML. In 2nd ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), pages 342– 344. ACM. [GS Search].

Rajkumar, N. e Ramalingam, V. (2015). Cognitive intelligent tutoring system based on affective state. Indian Journal of Science and Technology, [S.l.], sep. 2015. ISSN 0974 -5645. Available at: . Date accessed: 22 Oct. 2016. doi:10.17485/ijst/2015/v8i24/80145.

Razak, A. A. et al. (2005). Comparison between fuzzy and NN method for speech emotion recognition. IEEE. Third International Conference on Information Technology and Applications, 2005. v.1, p. 297-302. doi: 10.1109/ICITA.2005.101.

Reis, H. M.; Alvares, D. ; Maillard, P. A. J. ; Isotani, S. (2018). Analysis of permanence time in emotional states: A case study using educational software. In: International Conference on Intelligent Tutoring Systems, Montreal. International Conference on Intelligent Tutoring Systems. New York: Springer, 2018. [GS Search].

Reis, R. C. D., Rodriguez, C. L., Lyra, K. T., Jaques, P. A., Bittencourt, I. I., & Isotani, S. (2015). State of the Art on Affect for Group Formation in CSCL Environments. Brazilian Journal of Computers in Education, 23(03), 113-130. [GS Search].

Reis, H. M.; Maillard, P. A. J. ; Isotani, S. (2017). Sistemas Tutores Inteligentes que reconhecem o estado emocional do estudante: Um mapeamento sistemático. Research and Innovation in Brazilian Education.. 2ed.Palo Alto: Lemann Center, 2017, v. 1, p. 101-104. [GS Search].

Robison, J.L.; Mcquiggan, S.W. e Lester, J.C. (2009). Modeling Task-Based vs. Affect-based Feedback Behavior in Pedagogical Agents: An Inductive Approach. In Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, Vania Dimitrova, Riichiro Mizoguchi, Benedict du Boulay, and Art Graesser (Eds.). IOS Press, Amsterdam, The Netherlands, The Netherlands, 25-32. doi: 10.3233/978-1-60750-028-5-25.

Rodrigues, L. M. L., & Carvalho, M. (2005). STI-I: Sistemas Tutoriais Inteligentes que integram cognição, emoção e motivação. Brazilian Journal of Computers in Education, 13(1). [GS Search].

Rosemberg, E. L. e Elkman, P. (1994). Coherence between expressive and experiential systems in emotion. Cognition and Emotion, 8, 201-229. doi: 10.1080/02699939408408938.

Ruch, W. (1995). Will the real relationship between facial expression and affective experience please stand up: The case of exhilaration. Cognition and Emotion, 9, 33-58. doi: 10.1080/02699939508408964.

Santos F.M. e Mortimer, E.F. (2001). Comunicação não-verbal em sala de aula. Revista Brasileira de Pesquisa em Educação em Ciências, 11 (1), 18-30. [GS Search].

Sarrafzadeh, A.; Alexander, S.; Dadgostar, F.; Fan, C. e Bigdeli, A. (2008). “How do you know that I don’t understand?” A look at the future of intelligent tutoring systems, Computers in Human Behavior, 24(4):1342-1363. doi: 10.1016/j.chb.2007.07.008.

Sarrafzadeh, A.; Shanbehzadeh, A. e Overmyer, S. (2011). Capítulo 7: E-Learning with Affective Tutoring Systems. Intelligent Tutoring Systems in E-Learning Environments: Design, Implementation and Evaluation. Editores: Stankov, S.; Glavinic, V. e Rosic, Marko. Nova York. pp. 129-139. doi: 10.4018/978-1-61692-008-1.

Scherer, K. R. (2000). Psychological models of emotion. In J. Borod (Ed.). The neuropsychology of emotion (pp. 137–162). Oxford/New York: Oxford University Press. [GS Search].

Schneider, K.; Josephs, I. (1991). The expressive and communicative functions of preschool children’s smiles in an achievement situation. Nonverbal Behavior 15. doi: 10.1007/BF01672220.

Schyns, P.; L. Petro, and Smith, M. (2009). Transmission of facial expressions of emotion co-evolved with their efficient decoding in the brain: Behavioral and brain evidence. PLoS ONE 4(5), e5625. doi: 10.1371/journal.pone.0005625.

Shanabrook, D. H.; Arroyo, I. e Woolf, B. P. (2016). Using Touch as a Predictor of Effort: What the iPad Can Tell Us about User Affective State. User Modeling, Adaptation, and Personalization, 7379:322-327. [GS Search].

Sharma, R. N. U.; Kim, C. (2002). Emotion recognition in spontaneous emotional utterances from movie sequences. In: WSEAS International Conference on Electronics, Control & Signal Processing. [GS Search].

Silva, M. E. e Silva, P. S. (2016). Elementos da face do professor no cenário tutorial: implicações na formação de enfermeiros. Revista de Pesquisa: Cuidado é Fundamental; 8(1): 3803-3819. doi: 10.9789/2175-5361.2016.v8i1.3803-3819.

Smilek, D.; Carriere, J.S.A. e Cheyne, J.A. (2010). Out of mind, out of sight: eye blinking as indicator and embodiment of mind wandering. Psychological Science, 21 (6): 786–789. doi: 10.1177/0956797610368063.

Smith, BL; Brown, BL; Strong, WJ; Rencher, A.C. (1975). Effects of speech rate on personality perception. Language and speech. 18 (2): 145–52. doi: 10.1177/002383097501800203.

Stefanelli, M.C. (1993). Comunicação com o paciente. Teoria de ensino. São Paulo: Robe. [GS Search].

Tao, J.; Tieniu, T. (2005). Affective Computing: A Review. Affective Computing and Intelligent Interaction. LNCS 3784. Springer. pp. 981–995. doi:10.1007/11573548.

Thurman, L. e Welch, G.F. (2000). Body mind & voice: Foundations of voice education (revised ed.), Collegeville, Minnesota: The Voice Care Network et al., ISBN 0-87414-123-0. [GS Search].

Tian, Y. L., Kanade, T., & Cohn, J. F. (2005). Facial expression analysis. Handbook of face recognition, 247-275. [GS Search].

Todorov, J. C. (2012). Sobre uma definição de comportamento. Perspectivas em análise do comportamento, 3(1), 32-37. [GS Search].

Tóth, S. L.; Sztahó, D.; Vicsi, K. (2008). Speech emotion perception by human and machine. In: Verbal and Nonverbal Features of Human-Human and Human-Machine Interaction. Springer. p. 213-224. doi: 10.1007/978-3-540-70872-8_16.

Vail, A. K.; Grafsgaard, J. F.; Boyer, K. E.; Wiebe, E. N. e Lester, J. C. (2016). Gender Differences in Facial Expressions of Affect During Learning. In Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization (UMAP '16). ACM, New York, NY, USA, 65-73. doi: 10.1145/2930238.2930257.

VanLehn, K. (2006). The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education, 16(3):227-265. [GS Search].

VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. Educational Psychologist, 46 (4): 197–221. doi: 10.1080/00461520.2011.611369.

Vos, H. J. (1995). Applications of Bayesian decision theory to intelligent tutoring systems. Computers in Human Behavior, 11(1), 149–162. doi: 10.1016/0747-5632(94)00029-H.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Morgan Kaufman. [GS Search].

Williams, C.E.; Stevens, K.N. (1972). Emotions and speech: some acoustical correlates. The Journal of the Acoustical Society of America, 52 (4): 1238–50. doi: 10.1121/1.1913238.

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann. [GS Search].

Woolf, B.; Burleson, W.; Arroyo, I.; Dragon, T.; Cooper, D. e Picard, R. (2009). Affect-aware tutors: recognising and responding to student affect. Int. J. Learning Technology, 4(3/4):129:164. doi: 10.1504/IJLT.2009.028804.

Wu, C.-H.; Huang, Y.-M. e Hwang, J-P. (2015). Review of affective computing in education/learning: Trends and challenges. British Journal of Education Technology, 47(6):1304-1323. doi: 10.1111/bjet.12324.

Zatarain-Cabada, R.; Barrón-Estrada, M. L.; Camacho, J. L. O. e Reyes-García, C. A. (2013). Integrating Learning Styles and Affect with an Intelligent Tutoring System. 2013 12th Mexican International Conference on Artificial Intelligence, Mexico City, 2013, pp. 247-253. doi: 10.1109/MICAI.2013.36.

Zatarain-Cabada, R.; Barrón-Estrada, M. L.; Camacho, J.L.O. e Reyes-García, C.A. (2014). Capítulo: Affective Tutoring System for Android Mobiles. Intelligent Computing Methodologies, 8589:1-10. doi: 10.1007/978-3-319-09339-0_1.




DOI (PDF): https://doi.org/10.5753/rbie.2018.26.03.76

____________________________________________________________________________

Revista Brasileira de Informática na Educação (RBIE) (ISSN: 1414-5685; online: 2317-6121)
Brazilian Journal of Computers in Education (RBIE) (ISSN: 1414-5685; online: 2317-6121)