Adaptabilidade de Objetos de Aprendizagem usando Calibragem e Sequenciamento Adaptativo de Exercícios

Rômulo César Silva, Alexandre Ibrahim Direne, Diego Marczal, Ana Carla Borille, Paulo Ricardo Bittencourt Guimarães, Angelo da Silva Cabral, Bruno Filla Camargo

Resumo


Este trabalho aborda questões teóricas e de implementação de um arcabouço para a construção e execução de Objetos de Aprendizagem (OAs), em que as tarefas de resolução de problemas são ordenadas de acordo com o emparelhamento de 2 parâmetros calculados de maneira automática, formalmente definidos por expressões algébricas:(1) nível de expertise do aluno e (2) dificuldade de solução de um problema. O nível de habilidade é calculado automaticamente, expresso por um rating semelhante aos usados em jogos. O cálculo da dificuldade de solução é baseado em erros e acertos de estudantes ao lidar com o problema. As fórmulas algébricas desenvolvidas foram validadas mediante um estudo empírico realizado a partir de dados coletados de alunos reais. Também foi realizada uma avaliação experimental da aprendizagem utilizando um OA construído com o arcabouço para o domínio de logaritmos, aplicado a quatro turmas do ensino médio de uma escola pública, e os respectivos resultados são apresentados.


Palavras-chave


Rating; Calibragem de Exercícios; Objetos de Aprendizagem

Texto completo:

PDF

Referências


Anderson, J. R. (2004). Psicologia Cognitiva e suas Implicações Experimentais. LTC.

Baker, F. B. (2001). The Basics of Item Response Theory. University of Wiscosin: ERIC Clearinghouse on Assessment and Evaluation. [GS Search]

Baker, R. S. J. d., Goldstein, A. B., & Heffernan, N. T. (2010). Detecting the Moment of Learning. LNCS, 6094(PART I), 25–34. doi: 10.1007/978-3-642-13388-6_7 [GS Search]

Battistella, P. E., von Wangenheim, C. G., & Fernandes, J. M. (2014). Como jogos educacionais são desenvolvidos? Uma revisão sistemática da literatura. In WEI - XXII Worshop sobre Educação em Computação - CSBC 2014 (pp. 1445–1455). SBC. [GS Search]

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends® in Machine Learning, 5(1), 1–122. doi: 10.1561/2200000024 [GS Search]

Cen, H. (2008). Generalized Learning Factors Analysis: Improving Cognitive Models with Machine Learning. Carnegie Mellon University.

Cen, H., Koedinger, K., & Junker, B. (2008). Comparing Two IRT Models for Conjunctive Skills. In B. P. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the the 9th International Conference of Intelligent Tutoring Systems (ITS 2008) (Vol. 5091, pp. 796–798). Springer Berlin Heidelberg. [GS Search]

Champaign, J., & Cohen, R. (2010). A Model for Content Sequencing in Intelligent Tutorign Systems Based on the Ecological Approach and Its Validation Through Simulated Students. In Proceedings of the the 23rd Florida Artificial Intelligence Research Society Conference (FLAIRS 2010) (pp. 486–491). Association for the Advancement of Artificial Intelligence (AAAI). [GS Search]

Clement, B., Roy, D., & Oudeyer, P.-Y. (2014). Online Optimization of Teaching Sequences with Multi-Armed Bandits. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (pp. 269–272). [GS Search]

Conati, C. (2009). Intelligent Tutoring Systems: New Challenges and Directions. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’09) (pp. 2–7). San Francisco. [GS Search]

Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the Acquisition of Procedural Knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278. doi:10.1007/BF01099821 [GS Search]

Desarkar, M. S., & Sarkar, S. (2012). Rating prediction Using Preference Relations Based Matrix Factorization. In K. Y. Eelco Herder & S. Weibelzahl (Eds.), Workshop and Poster Proceedings of the 20th Conference on User Modeling, Adaptation, and Personalization (UMAP2012) (Vol. 872). http://ceur-ws.org/. [GS Search]

Desmarais, M. C., & Baker, R. S. J. D. (2011). A review of recent advances in learner and skill modeling in intelligent learning environments. User Modeling and User-Adapted Interaction, 22(1–2), 9–38. doi:10.1007/s11257-011-9106-8

Feng, M. (2009). Towards Assessing Students’ Fine Grained Knowledge: Using an Intelligent Tutor for Assessment. Worcester Polytechnic Institute. [GS Search]

Ferguson, K., Woolf, B., & Barto, A. (2006.). Improving Intelligent Tutoring Systems: Using Expectation Maximization To Learn Student Skill Levels, 1–22. [GS Search]

Gong, Y., Beck, J. E., & Heffernan, N. T. (2010). Comparing Knowledge Tracing and Performance Factor Analysis by Using Multiple Model Fitting Procedures. LNCS, 6094(PART I), 35–44. [GS Search]

Günel, K., & Asliyan, R. (2009). Determining Difficulty of Questions in Intelligent Tutoring Systems. In The Turkish Online Journal of Educational Technology - TOJET (Vol. 8). [GS Search]

Guzmán, E., & Conejo, R. (2015). Measuring Misconceptions Through Item Response Theory. In C. Conati, N. Heffernan, A. Mitrovic, & M. F. Verdejo (Eds.), Proceedings of 17th International Conference on Artificial Intelligence in Education (AIED 2015) (Vol. 9112, pp. 608–611). Springer International Publishing Switzerland. doi: 10.1007/978-3-319-19773-9_73 [GS Search]

Isotani, S., Adams, D., Mayer, R. E., Durkin, K., Rittle-Hohnson, B., & McLaren, B. M. (2011). Can Erroneous Examples Help Middle-School Students Learn Decimals? In C. D. K. et al. (Ed.), European Conference on Technology Enhanced Learning (EC-TEL 2011) (Vol. 6964, pp. 181–195). Palermo: Springer Berlin Heidelberg. [GS Search]

Klašnja-Milićević, A., Vesin, B., Ivanocić, M., & Budimac, Z. (2011). E-learning Personalization based on Hybrid Recommednation Strategy and Learning Style Identification. Computers & Education, 56(3), 885–899.

List, C. (2013). Social Choice Theory. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2013). [GS Search]

Major, N., & Reichgelt, H. (1992). COCA: A Shell for Intelligent Tutoring Systems. In Proc. of the International Conference on Intelligent Tutoring Systems (ITS92) (pp. 523–530). Springer.

Marczal, D. (2014). Farma: Uma Ferramenta de Autoria para Objetos de Aprendizagem de Conceitos Matemáticos. Universidade Federal do Paraná, UFPR. [GS Search]

Marczal, D., & Direne, A. (2011). Um Arcabouço que Enfatiza a Retroação a Contextos de Erro na Solução de Problemas. Revista Brasileira de Informática Na Educação, 19(1), 63. Retrieved from http://www.br-ie.org/pub/index.php/rbie/article/view/1298 doi: 10.5753/rbie.2011.19.01.63 [GS Search]

Marczal, D., & Direne, A. (2012). FARMA: Uma ferramenta de autoria para objetos de aprendizagem de conceitos matematicos. In Anais do Simposio Brasileiro de Informatica na Educacao (Vol. 23).

McNamara, D. S., Jackson, G. T., & Graesser, A. (2009). Intelligent Tutoring and Games (ITaG). In H. C. Lane, A. Ogan, & V. Shute (Eds.), AIED 2009 Workshops Proceedings Volume 3: Intelligent Educational Games (pp. 1–10). University of Southern California.

Mitrovic, A. (2003). An Intelligent SQL Tutor on the Web. International Journal of Artificial Intelligence in Education, 13(3), 173–197. [GS Search]

Mitrovic, A., Koedinger, K. R., & Martin, B. (2003). A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modeling. In P. Brusilovsky, A. Corbett, & F. Rosis (Eds.), User Modeling 2003, 9th International Conference (UM 2003) (pp. 313–322). Johnstown-PA: Springer Berlin Heidelberg. [GS Search]

Nkambou, R., Bourdeau, J., & Mizoguchi, R. (2010). Advances in Intelligent Tutoring Systems (Vol. 308). Springer. [GS Search]

Nwana, H. S. (1990). Intelligent Tutoring Systems: an overview. Artificial Intelligence Review, 4(4), 251–277. [GS Search]

Papoušek, J., & Pelánek, R. (2015). Impact of Adaptive Educational System Behaviour on Student Motivation. In C. C. et al. (Ed.), 17th International Conference on Artificial Intelligence on Education (AIED 2015) (Vol. 9112, pp. 348–357). Madrid: Springer. [GS Search]

Pimentel, A. R., & Direne, A. I. (1998). Medidas Cognitivas para o Ensino de Conceitos Visuais com Sistemas Tutores Inteligentes. In R. S. Wazlawick (Ed.), Revista Brasileira de Informática na Educação (Vol. 2, p. 17-24). [GS Search]

Pinkwart, N., & Loll, F. (2009). Comparing Three Approaches to Assess the Quality of Students’ Solutions. In D. Dicheva, R. Mizoguchi, & N. Pinkwart (Eds.), AIED 2009 Workshops Proceedings Volume 2, SWEL’09: Ontologies and Social Semantic Web for Intelligent Educational Systems Intelligent Educational Games (pp. 81–85). [GS Search]

Ravi, G. A., & Sosnovsky, S. (2013). Exercise difficulty Calibration Based on Student Log Mining. In F. Mödritscher, V. Luengo, E. L.-C. Law, & U. Hoppe (Eds.), Proceedings of DAILE’13: Workshop on Data Analysis and Interpretation for Learning Environments. Villard-de-Lans (France). [GS Search]

Rioja, R. M. G., Santos, S. G., Pardo, A., & Kloos, C. D. (2003). A Parametric Exercise Based Tutoring System. In 33rd Annual Frontiers in Education, 2003 (FIE 2003) (Vol. 3, p. S1B_20-S1B_26). doi:10.1109/FIE.2003.1265906 [GS Search]

Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A. (2007). Cognitive Tutor: Applied Research in Mathematics Education. Psychonomic Bulletin & Review, 14(2), 249–255. [GS Search]

Sales, G. L., Barroso, G. C., & Soares, J. M. (2011). Um Indicador de Aprendizagem Não-linear para EaD online Fundamentado no Modelo de Avaliação Learning Vectors (LV). In Anais do XXII SBIE - XVII WIE (pp. 1713–1722). [GS Search]

Savi, R., & Ulbricht, V. R. (2008). Jogos Digitais Educacionais: Benefícios e Desafios. RENOTE - Novas Tecnologias Na Educação, 6(2). [GS Search]

Schatten, C., & Schmidt-Thieme, L. (2014). Adaptive Content Sequencing without Domain Information. 6th International Conference on Computer Based Education. [GS Search]

Segal, A., Katzir, Z., Gal, K., Shani, G., & Shapira, B. (2014). EduRank: A Collaborative Filtering Approach to Personalization in E-learning. In P. Z. M. M. M. B. M. Stamper J. (Ed.), Proceedings of the 7th International Conference on Educational Data Mining (pp. 68–75). [GS Search]

Segedy, J. R., Loretz, K. M., & Biswas, G. (2013). Suggest-Assert-Modify: A Taxonomy of Adaptive Scaffolds in Computer-Based Learning Environments. In G. Biswas, R. Azevendo, V. Shute, & S. Bull (Eds.), AIED 2013 Workshops Proceedings Volume 2: Scaffolding in Open-Ended Learning Environments (OELEs) (pp. 73–80). [GS Search]

Self, J. (1990). Bypassing the Intractable Problem of Student Modelling, (41), 1–26.

Thai-Nghe, N. (2011). Predicting Student Performance in a Intelligent Tutoring System. Department of Computer Science, Information Systems and Machine learning Lab (ISMLL), University of Hildesheim, Germany.

Vanlehn, K. (2006). The Behavior of Tutoring Systems. International Journal of Artificial Intelligence, 16(3), 227–265. [GS Search]

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of knowledge. Morgan Kaufmann.

Wiley, D. A. (2000). The Instructional Use of Learning Objects: Online Version. In D. A. Wiley (Ed.). http://www.reusability.org/read/ [GS Search]

Woolf, B. P. (2009). Building Intelligent Interactive Tutors: Student-centered Strategies for Revolutionizing e-Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Xu, Y., & Mostow, J. (2011). Using Logistic Regression to Trace Multiple Subskillsin a Dynamic Bayes Net. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero, & J. Stamper (Eds.), Proceedings of the the 4th International Conference on Educational Data Mining (EDM 2011) (pp. 241–245). Eindhoven, Holanda: International Educational Data Mining Society. [GS Search]




DOI: https://doi.org/10.5753/rbie.2018.26.01.70

DOI (PDF): https://doi.org/10.5753/rbie.2018.26.01.70

____________________________________________________________________________

Revista Brasileira de Informática na Educação (RBIE) (ISSN: 1414-5685; online: 2317-6121)
Brazilian Journal of Computers in Education (RBIE) (ISSN: 1414-5685; online: 2317-6121)