Flow Theory to Promote Learning in Educational Systems: Is it Really Relevant?

Wilk Oliveira dos Santos, Ig Ibert Bittencourt, Seiji Isotani, Diego Dermeval, Leonardo Brandão Marques, Ismar Frango Silveira

Resumo


Flow Theory has been increasingly applied to Computers and Education to address several topics within this field (e.g., motivation, engagement, learning performance and so on). At the same time, in comparison with other recent theories related to Computers and Education, (e.g., Self-Determination Theory, S-Curve Theory, Intrinsic motivation, etc.), is a young topic, with different open research questions. Additionally, the Computers and Education community still lacks a comprehensive understanding of how Flow Theory is used in the area. Thus, this paper presents a Systematic Literature Review aiming to identify how students' flow state are measured during learning activities, how such activities are designed, which are the flow models used in Computers and Education and which are the main benefits of being in the flow state for the students. The main findings of this work are: (1) there is positive evidence about the benefits of applying Flow Theory in Computers and Education, especially, for increasing students’ learning, to generate students’ satisfaction, and to enable exploratory behavior; (2) the majority of studies use questionnaires to manual identify students’ flow state; (3)  a great diversity of flow state scales have been used; (4) the majority of studies are not designing activities for leading students to the flow state, and (5) the Csikszentmihalyi’ flow model is more used. Finally, we conclude this work by showing some promising and interesting research opportunities that are underexplored in current research and practice.

Palavras-chave


Flow Theory, Flow State, Flow Experience, Computers and Education, Systematic Literature Review

Texto completo:

PDF (English)

Referências


Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. R. (2014). A systematic literature review of software requirements prioritization research. Information and software technology, 56(6), 568-585. doi: 10.1016/j.infsof.2014.02.001 [GS Search].

Admiraal, W., Huizenga, J., Akkerman, S., & Ten Dam, G. (2011). The concept of flow in collabo-rative game-based learning. Computers in Human Behavior, 27(3), 1185-1194. doi: 10.1016/j.chb.2010.12.013 [GS Search].

Anderson, T. (Ed.). (2008). The theory and practice of online learning. Athabasca University Press. [GS Search].

Bittencourt, I. I., Baranauskas, M. C., Pereira, R., Dermeval, D., Isotani, S., & Jaques, P. (2016). A systematic review on multi-device inclusive environments. Universal Access in the Information Society, 15(4), 737-772. doi: 10.1007/s10209-015-0422-3 [GS Search].

Bittencourt, I. I., Costa, E., Silva, M., & Soares, E. (2009). A computational model for developing semantic web-based educational systems. Knowledge-Based Systems, 22(4), 302-315. doi: 10.1016/j.knosys.2009.02.012 [GS Search].

Boisvert, L. (2000). Web-based learning. Information Systems Management, 17(1), 35-41. doi: 10.1201/1078/43190.17.1.20000101/31212.5 [GS Search].

Bozkurt, A., Akgun-Ozbek, E., Yilmazel, S., Erdogdu, E., Ucar, H., Guler, E., ... & Aydin, C. H. (2015). Trends in distance education research: A content analysis of journals 2009-2013. The International Review of Research in Open and Distributed Learning, 16(1). doi: 10.19173/irrodl.v16i1.1953 [GS Search].

Brusilovsky, P., & Maybury, M. T. (2002). From adaptive hypermedia to the adaptive web. Com-munications of the ACM, 45(5), 30-33. doi: 10.1145/506218.506239 [GS Search].

Challco, G. C., Moreira, D., Mizoguchi, R., & Isotani, S. (2014, June). Towards an ontology for gamifying collaborative learning scenarios. In International Conference on Intelligent Tutoring Systems (pp. 404-409). Springer, Cham. doi: 10.1007/978-3-319-07221-0_50 [GS Search].

Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786. doi: 10.1016/j.compedu.2011.10.002 [GS Search].

Chen, H., Wigand, R.T., & Nilan, M. (1999). Optimal experience of Web activities. Computers in Human Behavior , 15(5), 585-608. doi: 10.1016/S0747-5632(99)00038-2 [GS Search].

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic liter-ature review of empirical evidence on computer games and serious games. Computers & Educa-tion, 59(2), 661-686. doi: 10.1016/j.compedu.2012.03.004 [GS Search].

Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New York (HarperPer-ennial) 1990. [GS Search].

Csikszentmihalyi, M. (2000). Beyond boredom and anxiety. Jossey-Bass. [GS Search].

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning. Learning and Instruction, 22(2), 145-157. doi: 10.1016/j.learninstruc.2011.10.001 [GS Search].

Dermeval, D., Vilela, J., Bittencourt, I. I., Castro, J., Isotani, S., & Brito, P. (2014, September). A systematic review on the use of ontologies in requirements engineering. In Software Engineering (SBES), 2014 Brazilian Symposium on (pp. 1-10). IEEE. doi: 10.1109/SBES.2014.13 [GS Search].

Dieste, O., Grimán, A., & Juristo, N. (2009). Developing search strategies for detecting relevant experiments. Empirical Software Engineering, 14(5), 513-539. doi: 10.1007/s10664-008-9091-7 [GS Search].

Ding, W., Liang, P., Tang, A., & Van Vliet, H. (2014). Knowledge-based approaches in software documentation: A systematic literature review. Information and Software Technology, 56(6), 545-567. doi: 10.1016/j.infsof.2014.01.008 [GS Search].

dos Santos, W. O., & da Silva Junior, C. G. State of the Art in Educational Games Virtualization. RENOTE, 14(1). doi: 10.22456/1679-1916.67347 [GS Search].

dos Santos, W. O., Gomes, T., & Silva, C. (2017, October). Towards to Flow State Identification in Educational Games: An Empirical Study. In Brazilian Symposium on Computers in Education (Vol. 28, No. 1, p. 927). doi: 10.5753/cbie.sbie.2017.927 [GS Search].

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic review. Information and software technology, 50(9), 833-859. doi: 10.1016/j.infsof.2008.01.006 [GS Search].

Eisenberger, R., Jones, J. R., Stinglhamber, F., Shanock, L., & Randall, A. T. (2005). Flow experiences at work: For high need achievers alone?. Journal of Organizational Behavior, 26(7), 755-775. doi: 10.1002/job.337 [GS Search].

Faiola, A., Newlon, C., Pfaff, M., & Smyslova, O. (2013). Correlating the effects of flow and telepresence in virtual worlds: Enhancing our understanding of user behavior in game-based learning. Computers in Human Behavior, 29(3), 1113-1121. doi: 10.1016/j.chb.2012.10.003 [GS Search].

Fu, F. L., Su, R. C., & Yu, S. C. (2009). EGameFlow: A scale to measure learners’ enjoyment of e-learning games. Computers & Education, 52(1), 101-112. doi: 10.1016/j.compedu.2008.07.004 [GS Search].

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challeng-ing games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179. doi: 10.1016/j.chb.2015.07.045 [GS Search].

Hernandes, E., Zamboni, A., Fabbri, S., & Thommazo, A. D. (2012). Using GQM and TAM to evaluate StArt-a tool that supports Systematic Review. CLEI Electronic Journal, 15(1), 3-3. [GS Search].

Heutte, J., Fenouillet, F., Boniwell, I., Martin-Krumm, C., & Csikszentmihalyi, M. (2013). EduFlow: Proposal for a new measure of flow in education. Manuscript sumbitted for publica-tion/Manuscrit soumis pour publication, 38-p. [GS Search].

Hoffman, D. L., & Novak, T. P. (1996) “Marketing in hypermedia computer-mediated environ-ments: Conceptual foundations”. Journal of Marketing, 60(2), 50–68. doi: 10.2307/1251841 [GS Search].

Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromag-netism using augmented reality: Impact on flow student experience and educational effective-ness. Computers & Education, 71, 1-13. doi: 10.1016/j.compedu.2013.09.004 [GS Search].

Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: The flow state scale–2 and dispositional flow scale–2. Journal of Sport and Exercise Psychology, 24(2), 133-150. doi: 10.1123/jsep.24.2.133 [GS Search].

Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The Flow State Scale. Journal of sport and exercise psychology, 18(1), 17-35. doi: 10.1123/jsep.18.1.17 [GS Search].

Jonassen, D., & Land, S. (Eds.). (2012). Theoretical foundations of learning environments. Routledge. [GS Search].

Katuk, N., Omar, M., & Halim, N. (2014, December). Improving Engagement in Hypermedia Learning: A Design for Navigation Support. In Proceedings of the 16th International Confer-ence on Information Integration and Web-based Applications & Services (pp. 40-43). ACM. doi: 10.1145/2684200.2684316 [GS Search].

Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisci-plinary Journal on Humans in ICT Environments, 2(2), 187-201. Available at: https://jyx.jyu.fi/handle/123456789/20195 [GS Search].

Kiili, K., & Lainema, T. (2008). Foundation for measuring engagement in educational games. Journal of Interactive Learning Research, 19(3), 469. Available at: https://www.learntechlib.org/primary/p/24197/ [GS Search].

Kiili, K., de Freitas, S., Arnab, S., & Lainema, T. (2012). The design principles for flow experience in educational games. Procedia Computer Science, 15, 78-91. doi: 10.1016/j.procs.2012.10.060 [GS Search].

Kim, N. Y. (2009). The structural relationship among academic motivation, program, organizational support, interaction, flow and learning outcome in cyber education. Unpublished doctoral dis-sertation). Ewha Womans University, Seoul, Korea.

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. In: Technical report EBSE 2007–001, Keele University and Durham University Joint Report

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(2004), 1-26. [GS Search].

Kitchenham, B. (2007). Empirical paradigm–the role of experiments. Empirical Software Engineer-ing Issues. Critical Assessment and Future Directions, 25-32. doi: 10.1007/978-3-540-71301-2_9 [GS Search].

Mahdavi-Hezavehi, S., Galster, M., & Avgeriou, P. (2013). Variability in quality attributes of ser-vice-based software systems: A systematic literature review. Information and Software Tech-nology, 55(2), 320-343. doi: 10.1016/j.infsof.2012.08.010 [GS Search].

Martin, A. J., & Jackson, S. A. (2008). Brief approaches to assessing task absorption and enhanced subjective experience: Examining ‘short’and ‘core’flow in diverse performance domains. Moti-vation and Emotion, 32(3), 141-157. doi: 10.1007/s11031-008-9094-0 [GS Search].

Massimini, F. (1988). The systematic assessment of flow in daily experience, Optimal Experience. Psychological Studies of Flow in Consciousness, 266-287. [GS Search].

Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing science, 19(1), 22-42. doi: 10.1287/mksc.19.1.22.15184 [GS Search].

Paiva, R. O. A., Bittencourt, I. I., da Silva, A. P., Isotani, S., & Jaques, P. (2015, April). Improving pedagogical recommendations by classifying students according to their interactional behavior in a gamified learning environment. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 233-238). ACM. doi: 10.1145/2695664.2695874 [GS Search].

Pavlas, D., Heyne, K., Bedwell, W., Lazzara, E., & Salas, E. (2010, September). Game-based learning: The impact of flow state and videogame self-efficacy. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 54, No. 28, pp. 2398-2402). Sage CA: Los Angeles, CA: SAGE Publications. doi: 10.1177/154193121005402808 [GS Search].

Payne, B. R., Jackson, J. J., Noh, S. R., & Stine-Morrow, E. A. (2011). In the zone: flow state and cognition in older adults. Psychology and aging, 26(3), 738. doi: 10.1037/a0022359 [GS Search].

Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die Erfassung des Flow-Erlebens [Measuring flow experiences]. In J. Stiensmeier-Pelster & F. Rheinberg (Eds.), Diagnostik von Motivation und Selbstkonzept. Tests und Trends (Vol. 2, pp. 261–279). [GS Search].

Roberts, A. L. (2009). Children's reflections on cultural differences in ways of working together. University of California, Santa Cruz. [GS Search].

Rodriguez-Sanchez, A. M., Schaufeli, W. B., Salanova, M., & Cifre, E. (2008). Flow experience among information and communication technology users. Psychological Reports, 102(1), 29-39. doi: 10.2466/pr0.102.1.29-39 [GS Search].

Sala, T. (2013) “Game Design Theory Applied: The Flow Channel”. Available at: http://tinyurl.com/SalaFlowApplied. Accessed May, 19th, 2015.

Santos, W. O., Bittencourt, I. I., Isotani, S., Silveira, F. I., & Marques, L. B. (2015). Challenges of Flow Theory Applied to Computers in Education. In IV Workshop of Challenges of Computer in Education. Recife–PE, Brazil. [GS Search].

Santos, W. O.; Silva Junior, C. G. (2014) “Uso de Jogos no ensino da Matemática: Uma análise entre os jogos tradicionais e os jogos digitais, baseada em pesquisa e mapeamento dos materiais encontrados na Web”. In: X Seminário Jogos Eletrônicos, Educação e Comunicação. Salvador - BA. (in Portuguese) [GS Search].

Schell, J. (2014). The Art of Game Design: A book of lenses. CRC Press. [GS Search].

Scoresby, J., & Shelton, B. E. (2011) “Visual perspectives within educational computer games: effects on presence and flow within virtual immersive learning environments”. Instructional Science, 39(3), 227-254. doi: 10.1007/s11251-010-9126-5 [GS Search].

Seifert, T., Radu, O., & Doyle, A. (2010). Flow: An emotional experience in mathematics problem solving. In Interdisciplinary for the Twenty-First Century: Proceedings of the Third International Symposium on Mathematics and Its Connections to Arts and Sciences (pp. 139-154).

Shernoff, D. J., & Csikszentmihalyi, M. (2009). Cultivating engaged learners and optimal learning environments. Handbook of positive psychology in schools, 131-145. [GS Search].

Shin, N. (2006). Online learner’s ‘flow’experience: an empirical study. British Journal of Educational Technology, 37(5), 705-720. doi: 10.1111/j.1467-8535.2006.00641.x [GS Search].

Sinnamon, S., Moran, A., & O’Connell, M. (2012). Flow among musicians: measuring peak experiences of student performers. Journal of Research in Music Education, 60(1), 6-25. doi: 10.1177/0022429411434931 [GS Search].

Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106(2), 331. [GS Search].

Wohlin C, Runeson P, Ho¨st M, Ohlsson MC, Regnell B, Wessle´n A (2000) Experimentation in software engineering: an introduction. Kluwer Academic Publishers, Norwell. [GS Search].

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann. [GS Search].

Wu, W., & Chen, L. (2015, June). Implicit acquisition of user personality for augmenting movie recommendations. In International Conference on User Modeling, Adaptation, and Personalization (pp. 302-314). Springer, Cham. doi: 10.1007/978-3-319-20267-9_25 [GS Search].

Yoshida, K., Asakawa, K., Yamauchi, T., Sakuraba, S., Sawamura, D., Murakami, Y., & Sakai, S. (2013). The flow state scale for occupational tasks: development, reliability, and validity. Hong Kong Journal of Occupational Therapy, 23(2), 54-61. doi: 10.1016/j.hkjot.2013.09.002 [GS Search].




DOI: https://doi.org/10.5753/rbie.2018.26.02.29

DOI (PDF (English)): https://doi.org/10.5753/rbie.2018.26.02.29

____________________________________________________________________________

Revista Brasileira de Informática na Educação (RBIE) (ISSN: 1414-5685; online: 2317-6121)
Brazilian Journal of Computers in Education (RBIE) (ISSN: 1414-5685; online: 2317-6121)