Modelagem do Conhecimento Algébrico dos Estudantes com Redes Bayesianas Dinâmicas
Resumo
Palavras-chave
Texto completo:
PDFReferências
Baker, R. S. J. d., Corbett, A. T., & Aleven, V. (2008, June). More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In International Conference on Intelligent Tutoring Systems (pp. 406-415). Springer Berlin Heidelberg. DOI:10.1007/978-3-540-69132-7_44 [Google Scholar]
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational researcher, 13(6), 4-16. DOI:10.3102/0013189X013006004 [Google Scholar]
Brazil. Secretaria de Educação Fundamental. (2000). Parâmetros curriculares nacionais: matemática (Vol. 3). DP & A. [Google Scholar]
Carpenter, T. P., Kepner, H. S., Corbitt, M. K., Lindquist, M. M., & Reys, R. E. (1982). Student performance in algebra: Results from the national assessment. School Science and Mathematics, 82(6), 514-531. DOI:10.1111/j.1949-8594.1982.tb10052.x [Google Scholar]
Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural knowledge. User modeling and user-adapted interaction, 4(4), 253-278. DOI:10.1007/BF01099821 [Google Scholar]
Duijnhoven, J. V. (2003). Knowledge assessment using bayesian networks: A case study in the domain of algebraic expectation (Master’s thesis, Utrecht University). [Google Scholar]
Jaques, P. A., Seffrin, H., Rubi, G., de Morais, F., Ghilardi, C., Bittencourt, I. I., & Isotani, S. (2013). Rule-based expert systems to support step-by-step guidance in algebraic problem solving: The case of the tutor PAT2Math. Expert Systems with Applications, 40(14), 5456-5465. DOI:10.1016/j.eswa.2013.04.004 [Google Scholar]
Meyners, M. (2012). Equivalence tests–A review. Food Quality and Preference, 26(2), 231-245. DOI:10.1016/j.foodqual.2012.05.003 [Google Scholar]
Millán, E., DescalçO, L., Castillo, G., Oliveira, P., & Diogo, S. (2013). Using Bayesian networks to improve knowledge assessment. Computers & Education, 60(1), 436-447. DOI:j.compedu.2012.06.012 [Google Scholar]
National Commission on Excellence in Education. (1983). A nation at risk: The imperative for educational reform. The Elementary School Journal, 84(2), 113-130. DOI:10.1086/461348
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann. [Google Scholar]
Reye, J. (2004). Student modelling based on belief networks. International Journal of Artificial Intelligence in Education, 14(1), 63-96. [Google Scholar]
Russell, S. J., & Norvig, P. (2002). Artificial intelligence: a modern approach (International Edition).
Seffrin, H. M., & Jaques, P. (2014). Modelando o conhecimento algébrico do estudante através de Redes Bayesianas Dinâmicas. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 25, p. 782). DOI:10.5753/cbie.sbie.2014.782 [Google Scholar]
Seffrin, H. M., Rubi, G. L., & Jaques, P. A. (2014, March). A Dynamic Bayesian Network for Inference of Learners' Algebraic Knowledge. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (pp. 235-240). ACM. DOI:10.1145/2554850.2555062 [Google Scholar]
Seffrin, H. M., Rubi, G., & Jaques, P. (2013). Uma Rede Bayesiana aplicada aModelagem do Conhecimento Algébrico do Aprendiz. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 24, p. 597). DOI:10.5753/cbie.sbie.2013.597 [Google Scholar]
Seffrin, H., & Jaques, P. (2015, October). Avaliando o conhecimento algébrico dos estudantes através de Redes Bayesianas Dinâmicas. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 26, p. 987). DOI:10.5753/cbie.sbie.2015.987 [Google Scholar]
Seffrin, H., Rubi, G., & Jaques, P. (2011). O Modelo Cognitivo do Sistema Tutor Inteligente PAT2Math. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 22). [Anais do SBIE] [Google Scholar]
van der Gaag, L. C., Renooij, S., Witteman, C. L., Aleman, B. M., & Taal, B. G. (1999, July). How to elicit many probabilities. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence (pp. 647-654). Morgan Kaufmann Publishers Inc.. [Google Scholar]
Vanlehn, K. (2006). The behavior of tutoring systems. International journal of artificial intelligence in education, 16(3), 227-265. [Google Scholar]
Wool, B. (2008). Building intelligent interactive tutors. Morgan Kauffman. [Google Scholar]
Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013, July). Individualized bayesian knowledge tracing models. In International Conference on Artificial Intelligence in Education (pp. 171-180). Springer Berlin Heidelberg. DOI:10.1007/978-3-642-39112-5_18 [Google Scholar]
DOI: https://doi.org/10.5753/rbie.2016.24.02.54
DOI (PDF): https://doi.org/10.5753/rbie.2016.24.02.54
____________________________________________________________________________
Revista Brasileira de Informática na Educação (RBIE) (ISSN: 1414-5685; online: 2317-6121)
Brazilian Journal of Computers in Education (RBIE) (ISSN: 1414-5685; online: 2317-6121)